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Life as we know it would not exist without water. However, water molecules

not only serve as a solvent and reactant but can also promote hydrolysis,

which counteracts the formation of essential organic molecules. This conun-

drum constitutes one of the central issues in origin of life. Hydrolysis is an

important part of energy metabolism for all living organisms but only

because, inside cells, it is a controlled reaction. How could hydrolysis have

been regulated under prebiotic settings? Lower water activities possibly pro-

vide an answer: geochemical sites with less free and more bound water can

supply the necessary conditions for protometabolic reactions. Such conditions

occur in serpentinising systems, hydrothermal sites that synthesise hydrogen

gas via rock–water interactions. Here, we summarise the parallels between

biotic and abiotic means of controlling hydrolysis in order to narrow the gap

between biochemical and geochemical reactions and briefly outline how

hydrolysis could even have played a constructive role at the origin of molecu-

lar self-organisation.
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Water is essential for all known forms of life [1]. As

the solvent for life, it provides protons (H+) and

hydroxyl groups (OH–) for myriad reactions but it cre-

ates a central problem when it comes to life’s origin:

hydrolysis. Water molecules dissociate chemical bonds

and thereby break larger molecules or polymers into

their monomeric components. In free solution, con-

densation reactions that generate water are thermody-

namically unfavourable. Both protons and hydroxide

ions can catalyse hydrolysis reactions, making them

highly pH-dependent processes [2]. Water molecules

can easily cleave ester and amide bonds and thus

hydrolyse nucleic acids and proteins or they affect the

half-life of reactants. In hydrolysis, OH– usually

replaces another moiety in the molecule (e.g., phos-

phate, amino or thiol group) by nucleophilic substitu-

tion. In Escherichia coli metabolism, for example, the

most common reactant is H+, followed by water,

which participates as a substrate or product in over

500 reactions [3].

Cells counter hydrolysis by a number of mecha-

nisms, including energy metabolism [4]. The main

polymers of cells, proteins and nucleic acids are sus-

ceptible to hydrolysis. Their synthesis consumes about

80% of an anaerobic cell’s energy budget [5]. Energy

metabolism continuously supports ATP-dependent

polymer synthesis, thereby ensuring that the rate of

polymer synthesis is faster than the rate of hydrolysis.

At the origin of life roughly 4 billion years ago, how-

ever, before polymerisation of nucleotides, amino acids

or sugars could be coupled to an elaborate energy

metabolism, there must have been other means to

avoid the natural tendency towards hydrolysis [6,7]. In

serpentinising systems such as alkaline hydrothermal

vents (see Box 1 ‘Serpentinisation’), for example, the

chemically reactive environment can provide a steady

supply of monomers from simple inorganic com-

pounds (CO2, carbonates, hydrogen) via rock–water
interactions [8–11], although the exact source of these

monomers is a matter of debate [12].
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Recent findings reveal striking parallels between the

first steps of biochemical CO2 fixation with hydrogen

(H2) and carbon fixation under geochemical conditions

similar to those in serpentinising systems [22]. The

organic acids formate, acetate and pyruvate are

formed readily from H2 and CO2 in the presence of

H2O with the help of metals and mineral catalysts also

found in serpentinising systems [22,23]. Metal ion-as-

sisted reactions between pyruvate and glyoxylate lead

to more complex organic acids observed in metabo-

lism, for example fumarate, malate or a-ketoglutarate
[24]. In presence of reduced nitrogen compounds such

as ammonia [25] or hydroxylamine [24], pyruvate,

oxaloacetate and acetate can react to the simple amino

acids alanine, aspartic acid and glycine. Such reduced

nitrogen compounds can be obtained under hydrother-

mal conditions through the hydrogenation of dinitro-

gen (N2) over mineral catalysts [26–28]. Heterocyclic

monomers as nucleobases can either be derived from

formamide (which itself is the product of the reaction

between formic acid and ammonia) [29] or via a con-

densation reaction of amino acids, a route closer to

biological pathways [30]. Both approaches require,

however, low water activity. Although the direct syn-

thesis of amino acids or nucleobases starting from N2

and CO2 coupled to serpentinisation has not yet been

Box 1. Serpentinisation

Serpentinisation is a geochemical process that occurs when ultramafic rocks in the upper mantle interact with seawa-

ter drawn from cracks in the crust [13]. The main gas-phase product of this process is molecular hydrogen (H2),

resulting from the reduction of water protons with iron minerals.

The upper part of the Earth’s mantle consists mainly of peridotite, which is composed mostly of pyroxene (chain

silicate forming minerals) and olivine [14]. Olivine is an iron-magnesium silicate, a solid solution between the magne-

sium silicate forsterite (Mg2SiO4) and the iron silicate fayalite (Fe2SiO4). Below 400 °C forsterite dissolves in water

[15–18]:

Mg2SiO4 + 4 H+ ? 2 Mg2+ + SiO2(aq) + 2 H2O

At sufficient concentration of dissolved species, serpentine (Mg3Si2O5(OH)4) and brucite (Mg(OH)2) nucleate and

precipitate [15]

3 Mg2+ + 2 SiO2(aq) + 5 H2O ? Mg3Si2O5(OH)4 + 6 H+

Mg2+ + 2 H2O ? Mg(OH)2 + 2 H+

Both reactions hence consume water and produce H+ which promotes the dissolution of forsterite. Fayalite reacts

with hydrothermal water to magnetite (Fe3O4) and H2.

3 Fe2SiO4 + 2 H2O ? 2 Fe3O4 + 3 SiO2(aq) + 2 H2

This reaction also consumes water, but magnetite is a minor component of serpentinisation, although it is the main

product of Fe2+ oxidation. The majority of water is consumed through the reactions to serpentine and brucite. The

equilibrium pH of the hydrothermal fluid is nearly neutral at temperatures near 300 °C but increases to about pH 11

at 50 °C because the solubility of brucite increases at lower temperatures, releasing dissolved Mg2+ and OH– ions

[18].

The mineral content in serpentinising systems strongly varies with the environment in which each system is situ-

ated. If sufficient amounts of H2 accumulate in surroundings that bear Ni2+ containing compounds, native NiFe

alloys such as awaruite (Ni3Fe) can form [19,20].

(FeO) + 3 (NiO) + 4 H2 ? Ni3Fe + 4 H2O

Similarly, iron or nickel sulphides can form in systems with a higher proportion of H2S instead of H2 [19,21]. The

amount of H2 generated by serpentinisation depends upon temperature and the water:rock ratio of the reacting for-

mation. For example, at 100 °C, serpentinisation starting with harzburgite, an ultramafic olivine-containing rock, gen-

erates about 0.9 moles of H2 per kg of rock at a water:rock ratio of 0.2 (an excess of rock over water) but increases

to about 130 moles of H2 as the water:rock ratio increases to 10 [18].

Serpentinisation is a very widespread process and was probably more abundant on the early Earth than it is now

[16].
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demonstrated [11,12], under the high pressure and high

temperature conditions provided by serpentinising sys-

tems, activating N2, CO2 and H2 simultaneously on

mineral surfaces could, in principle, lead to complex

biomolecules and monomers including amino acids,

cofactors and nucleobases, which could foster the for-

mation of protometabolic autocatalytic networks [31].

Thus, the synthesis of simple biological organics from

H2 and CO2 using hydrothermal catalysts is facile [22],

yet the synthesis of more complex biomolecules from

H2, CO2 and N2 has yet to be reported.

But even if biomonomers can be formed in serpen-

tinising systems, as long as polymerisation products

are hydrolysed faster than they are synthesised, no

molecular complexity will ensue, because the formation

of complex monomers themselves can be prevented by

hydrolysis. This calls for a closer look at water activity

in geochemical, biological and primordial pro-

tometabolic settings. In this paper, we address the

issue of hydrolysis in an origin context at the interface

of geochemistry and biochemistry, considering its

mechanisms and their control under environmental

and cellular conditions.

Hydrolysis and water activity in
biology

The water content of the cytosol varies with cell size

and metabolism but it can range from a few dozen to

many thousand femtolitres (10�15) [32]. It consists of

bound and bulk (‘free’) water, water activity being the

mole fraction of bulk water (see Box 2 ‘What is water

activity?’). Cytosol is saturated with a wide range of

molecules making it a crowded environment with con-

centrations up to hundreds of g�L�1 of amino acids,

peptides, proteins, nucleic acids, nucleobases,

monosaccharides, sugars, etc. [33,34]. For example, the

concentration of amino acids in the cytosol, both free

and polymerised as protein, is about 550 g�L�1 [5].

The number and nature of dissolved molecules in the

cytosol result in very unique solvent properties of the

intracellular water which ultimately also facilitate poly-

merisation of biomolecules [35,36]. One can differenti-

ate between water of hydration (see Box 3 ‘Water of

hydration’), which is strongly absorbed to proteins

and other cellular compounds, and water that has the

physical and chemical properties of bulk water [37]. In

crystallised proteins, for example, about 40% of the

crystal weight comes from water, a mixture of water

of hydration and bulk water [37]. The two forms of

water have very different properties. Water of hydra-

tion has a higher heat capacity, is less mobile and

more ordered than bulk water, such that they differ in

their abilities to dissolve different compounds [37]. For

enzyme activity, water of hydration is essential as it

stabilises tertiary and quaternary conformations via

hydrogen bonding, charge–dipole interactions and

hydrophobic (entropic) effects. In short: water of

hydration keeps enzymes intact for catalysis [38,39].

Salts can also exert immense influence on water’s

characteristics as a solvent [45,46]. Sodium (Na+),

Box 2. What is water activity?

Water activity is a measure of the ‘effective concentra-

tion’ of water in a system, also referred to as ‘bulk

water’. When bulk water molecules bind to ions, to

surfaces, or are trapped otherwise, the overall water

activity of a system decreases.

A simple means to obtain the water activity is to

measure the water vapour pressure of an aqueous

solution. Fundamental thermodynamic relations show:

pw
p�w

¼ aw ¼ fw � xw

where pw is the water vapour pressure of the aque-

ous solution.

p�w is the vapour pressure of pure water at the same

external pressure and temperature as the solution

Xw is the mole fraction of water in the solution,

and

fw is the dimensionless activity coefficient.

Water activity is particularly affected by strong elec-

trostatic interaction of the partial charges of water

with ions from dissolved salts. The strong interaction

leads to comparable low water activity. In case of a

sufficiently diluted, ‘ideal’ solution, fw � 1 and:

pw
p�w

¼ xw ¼ 1� x2

x2 ¼ 1� pw
p�w

x2 ¼ ðp�w � pwÞ
p�w

According to this relation the relative lowering of

the vapour pressure of the solvent is equal to the mole

fraction x2 of the solved compound, for example the

salt in an aqueous salt solution (Raoult’s empirical

law from 1890) [40].
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potassium (K+), magnesium (Mg2+), phosphate (PO4
3–)

and chloride (Cl–) contribute to protein and enzyme

folding, structure and specificity by creating in situ

microenvironments where certain ions are more abun-

dant than in the bulk [36,47]. These microenviron-

ments regulate water activity via electrostatic

interaction. Hydrophilic surfaces are associated with a

higher concentration of water whereas hydrophobic

surfaces cause water to migrate to other sites. This

complex interplay helps to increase heat stability of

the macromolecules in their aqueous surrounding [48–
50]. The resulting intracellular water dynamics—also

called biological water activity—enable polymerisation

and energy conservation as enzymes control water-me-

diated interactions. Among these interactions are

hydrogenations [51,52], condensations [53,54] and

hydrolysis. The latter is central for energy metabolism

[55,56], because endergonic reactions can be coupled

to an energy-releasing hydrolytic reaction, ATP

hydrolysis in particular, thus facilitating endergonic

reactions in metabolism. Amino acid polymerisation,

for example, is endergonic and does not take place

spontaneously in pure aqueous (abiotic) systems [57].

Salt-induced or wet–dry cycle-driven peptide formation

[58,59], hydrothermal synthesis [60] or polymerisation

in the adsorbed phase, for example on mineral surfaces

[61,62], have been introduced as possible mechanisms

to promote peptide formation in an abiotic context

[57].

In cells however, amino acid polymerisation requires

the transfer of AMP from ATP to activate the amino

acid for polymerisation via tRNAs [63–65]. The trans-

fer releases pyrophosphate (PPi) which is subsequently

hydrolysed to make the activation irreversible under

physiological conditions (DG0’= – 19.3 kJ�mol�1) [65].

A similar mechanism is employed in nucleotide con-

densation, where pyrophosphate is released when a

phosphodiester bond between two nucleotides is

formed [66]. Pyrophosphate is immediately hydrolysed

into two free phosphate groups by pyrophosphatases

[65], enzymes that use Mg2+ ions to promote con-

trolled hydrolysis (shown in Fig. 1) [67]. Mg2+ ions

also assist with the assembly of nucleic acids by posi-

tioning the nucleotides in the correct conformation

[68]; another Mg2+ then activates the hydroxyl group

at the 30 end of the primer nucleotide, promoting the

formation of the ensuing phosphodiester bond [69].

The utility of ATP in biology resides its ability to be

hydrolysed at a phosphoanhydride bond, thus generat-

ing less energy-rich ADP and inorganic PO4
3– (Pi).

The energy released by the reaction from ATP to ADP

and Pi is 30.5 kJ�mol�1 and 45.6 kJ�mol�1 for the reac-

tion of ATP to AMP and PPi [65]. The continuous

cycle of hydrolysis and condensation reactions of

ATP, ADP, AMP, PPi, and Pi molecules allows energy

harnessing from macromolecules in metabolism via

energy coupling reactions [70,71]. In addition to ATP,

there are many other molecules in biology with the

ability to transduce chemical energy via energy cou-

pling reactions such as NAD, acyl thioesters, aminoa-

cyl esters and ribosyl moieties [72–75].
A number of reactions in the cell involve controlled

hydrolysis during the degradation of lipids, nucleic

acids and proteins. The enzymes responsible for these

reactions are hydrolases, which represent, with about

one third of all known enzymes, the largest enzyme

Box 3. Water of hydration

The term water of hydration is used in chemistry to

designate water in the crystal structure of a metal

complex or salt which is not directly bound to the

cation. Often the crystal properties are lost when this

water is removed by heating. In a biological context,

the importance of water of hydration is obvious. Pro-

teins crystallise with up to 50% water in their lattice,

much more than inorganic salts [37,41]. Often their

enzymatic function is reduced and their structure

changed if that water is removed. Most water in bio-

logical cells is water of hydration [37]. In this paper,

we use the concept of water of hydration in a broader

sense than just water of crystallisation to take effects

in biological systems into account.

Water of hydration is considered here as all water

that is not bound to the fluctuating network of bulk

water (pure liquid water) but to other species in the

aqueous phase. Often water of hydration is stronger

and more orderly bound than bulk water [42] and

therefore exhibits a substantially different Gibbs free

energy [43]. Water of hydration can be bound in the

first or second solvation shell of the cation or anion of

a solved salt, bound to the charged side chain(s) of

amino acids in a protein, ordered to hydrophobic

molecules or chemical groups, bound to a chain of

water molecules in a membrane protein channel con-

ducting protons or bound to a solid surface [41]. All

these interactions can be classified according to their

Gibbs free binding energy which can be quite large. A

high vacuum in a reactor, for example, can only be

obtained by heating its walls well above 100 °C for

many hours during pumping (a process known as

bake-out) to release the tightly attached monolayers of

water [44].
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class [67]. Subgroups of hydrolases employ divalent

metal cofactors like Mg2+, manganese (Mn2+), cobalt

(Co2+) and zinc (Zn2+) [67,76–78], all of which can also

be relevant in a prebiotic context [79–82]. Four hydro-

lases are considered particularly ancient, all of them

employing metal cofactors, three of them function

without nucleotide-derived cofactors like ATP or

NAD [83], pointing to a conserved and possibly pri-

mordial mechanism. Among the most ancient hydro-

lases are thioester hydrolases (e.g. acetyl-CoA

hydrolase) which operate with Mg2+ or Mn2+ in their

active centres [78,83].

The molecular mechanisms of catalysis in hydrolases

are quite well understood [67], although not known in

detail for every subgroup of the enzyme family yet.

Fig. 1 depicts the mechanism of a hydrolase active site

containing Mg2+ or Mn2+, showing that acidic amino

acids are crucial for positioning the ions such that they

produce OH– from water to perform targeted hydroly-

sis. As described earlier, the hydrolysis of pyrophos-

phate enables the polymerisation of amino acids and

nucleotides. Notably, Mg2+ can also catalyse hydroly-

sis on its own, without the protective environment of

the enzymatic active site [84]. In abiotic systems, where

there is no enzymatic activity, the overall availability

of salts and other charged molecules can regulate rates

of hydrolysis and condensation.

Hydrolysis is also a central aspect of carbon meta-

bolism [85–87]. One example is the participation of

water in all known CO2 fixation pathways, including

the acetyl-CoA pathway, which allows acetogens and

methanogens to grow from H2 and CO2 [88]. Genomic

reconstructions indicate that the last universal com-

mon ancestor (LUCA) followed a similar route, using

the acetyl-CoA pathway for carbon and energy meta-

bolism [89]. As already stated, recent studies show that

formate, acetate and pyruvate form overnight from H2

and CO2 in water using mineral catalysts alone under

hydrothermal conditions [22]. Similar abiotic routes

have recently been shown for intermediates and prod-

ucts of the reverse citric acid cycle [24,90]. The gap

between such hydrothermal conditions and the chem-

istry of real life as it is manifested in modern auto-

trophs is narrowing in this respect. Thus, there might

also be connection between the biochemistry in auto-

trophs and the geochemistry in serpentinising systems

when it comes to hydrolysis.

In hydrogenotrophic methanogenesis, the first step

towards the production of methane is the reduction of

CO2 to formyl-methanofuran (formyl-MFR) using

ferredoxin as the electron donor. This reaction is catal-

ysed by formyl-MFR dehydrogenase. In the enzymatic

mechanism, the CO2 molecule is funnelled through a

hydrophobic channel towards a catalytic chamber with

a tungsten active centre, into which electrons are

drawn via a long [4Fe-4S] cluster chain [91]. In the cat-

alytic chamber, CO2 is reduced to formate, a hydro-

philic molecule. Formate (or formic acid) diffuses

from the active site via a hydrophilic tunnel to a zinc

active centre where it is conjugated with MFR as a

carbamate [91]. This is a redox reaction involving elec-

trons from ferredoxin; water is generated as secondary

Fig. 1. Catalytic mechanism of Mg2+- or Mn2+-containing hydrolases (pyrophosphatase-type hydrolases). The metal complex formed with

the carboxyl groups of acidic amino acids and water molecules can activate both substrate (site shown in red) and water (site forming OH–,

shown in blue). Adapted from [67].
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product during carbamate formation. That is, an inter-

play of hydrophobic and hydrophilic surfaces in coop-

eration with metallic catalysts promotes controlled

water–substrate interactions at the initial CO2 fixation

step. The carbamate is reduced to a MFR-bound for-

myl-group. A stepwise reduction to a MFR-bound

methyl-group follows, before the group is transferred

to coenzyme M. After a last reduction step, the

methyl-group is released as CH4 [88].

It is common knowledge that enzymes tend to

exclude water from the active site and can readily

catalyse reactions against the water activity of the

cytosol. The question of what environmental condi-

tions could have promoted a prebiotic route from CO2

towards organics and life is more challenging.

The hydrolysis conundrum in origin of
life research

Water is indispensable for life as we know it to

emerge. But at the same time, water elimination (con-

densation, polymerisation) is one of the most common

reactions in metabolism underpinning the synthesis of

cells [53,54]. The reverse reaction, water addition, is

hydrolysis and can be chemically destructive to many

essential biomolecules. Through hydrolysis, water liter-

ally works against the synthesis and accumulation of

polymers at life’s emergence.

Although enzymatically mediated hydrolysis can

break any type of known carbon bond [92], modern

biomolecules are protected from random hydrolysis by

their structured spatial arrangement of hydrophobic/

hydrophilic surfaces and by interactions with inorganic

ions and other organic molecules [37]. They contribute

to an environment in which water participates in the

biochemical processes in a very controlled and targeted

manner. Of course, modern biomolecules have under-

gone permanent selection during evolution to remove

those that are unstable, insoluble or toxic in the cellu-

lar environment. At life’s origins, however, during the

phase of prebiotic chemistry before there were genes

and encoded proteins, there were no enzyme pockets,

no complex proteins, no ordered membranes or enzy-

matically elaborated energy metabolism to manage the

constant chemical pressure of reactions involving

water. Hence, the primordial polymerisation of simple

molecules into the precursors of proteins and nucleic

acids via the removal of water, a prerequisite for life,

took place without the help of the biological mecha-

nisms that modulate water activity in a living cell.

Nevertheless, we will see below that serpentinisation

itself generates inorganic mechanisms that modulate

water homeostasis.

At face value, the origin of life and fully aqueous

chemistry do not really work together well, especially

if high temperatures are required for chemical reac-

tions to take place [93,94]. But at the same time, the

cytosol of a cell is also not an environment of fully

aqueous chemistry. So, is there something wrong with

the basic concept of hydrothermal origins, or is there

something wrong with the premise that hydrothermal

settings generally involve fully aqueous chemistry?

There are specific physicochemical sites within serpen-

tinising systems that harbour and even maintain low

water activity (see Box 2) at rather moderate tempera-

tures (100–200 °C). Such systems provide a spectrum

of conditions as are required to get from C1 com-

pounds to complex organics [93,94]. As in cells, free

water in the right geochemical environment could be

bound as water of hydration with the help of salts and

other polar molecules, decreasing the water activity

and thus promoting the synthesis of larger molecules

[37,93]. Another possible way to promote hydrolysis-

sensitive reactions are mineral surfaces [22,27,95–104].
Mineral surfaces provide diversity of catalytic environ-

ments, enabling reactions at the solid–liquid phase

boundary under aqueous conditions [22,23,101,104–
106]. A combination of highly catalytically active min-

erals and low water activities (provided by high salt

conditions or other means) could enable a variety of

possible chemical pathways.

Modern high salt and high temperature environ-

ments present extreme settings for life. As such harsh

conditions were likely prevalent on the early Earth—
especially inside its crust—at the time when life

emerged [15,107], biologists have long suspected that

modern extremophiles might hold clues about the biol-

ogy of the first cells [108,109]. Found in Earth’s most

life-defying places, extremophiles could provide valu-

able insights into the transition from nonlife to life.

Haloarchaea, for example, can survive in salt crystals

for very long periods of time, possibly over geological

time periods, although how long exactly is open to

speculation [40,110]. In order to counteract the osmo-

tic pressure of the saline environment, some halophiles

transfer K+ ions into the cell [40]. Most other halo-

philes, however, choose a more energy-intensive route

to deal with high salt concentrations by synthesising

osmolytes like sugars, glycerol or amino acid deriva-

tives. With this strategy, only organisms with very

effective metabolic rates (high levels of ATP synthesis)

can survive under very saline conditions [111].

Salt can have interesting effects on the three-dimen-

sional structure of proteins under abiotic conditions. It

has been shown, for example, that homochiral leucine-

lysine (Leu-Lys) polypeptides fold as random coils in
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pure water [112]. But in salt they form thermostable

and hydrolysis stable bilayers of beta-sheets with the

hydrophilic side chains of Lys (positively charged

amino group) pointing outwards into the salt solution

and the hydrophobic side chains of Leu (isobutyl

group) inwards [112]. The structure of larger proteins

(140 amino acids) is also influenced by high salt con-

centrations (up to 2 M). Acidic amino acid chains are

stabilised by the salt cations, and beta-sheets fold so

as to point outwards. With simple hydrophobic amino

acids as Leu, Ile (isoleucine) and Val (valine) pointing

inside, a hydrophobic core/pocket can be formed,

where possible polymerisation reactions would be pro-

tected from the surroundings [113,114]. Such studies

show how high salt settings—and thus environments

with low water activity—can provide dynamic physico-

chemical conditions that naturally modulate structures

for prebiotic chemistry while keeping the risk of

hydrolysis lower than in purely aqueous environments.

These conditions arise via the operation of simple ionic

forces.

Various mechanisms have been proposed to solve or

circumvent the hydrolysis problem at the origin of life.

The most commonly encountered of these evokes the

existence of wet–dry cycles [59,97,106,115,116], which

entail alternating periods of hydrolysis (high water

activity) and condensation (no water activity) in order

to achieve polymerisation. Although such cycles deli-

ver promising results for nucleotide synthesis under

laboratory conditions [115], it is important to not only

constrain an environment for origins by water avoid-

ance, but also by considerations of carbon or energy

availability, the main prerequisites for microbial life.

An underexplored alternative to wet–dry cycles might

be solid phase–aqueous phase interfaces in geochemi-

cal systems where water activity is constantly low. This

was proposed recently for hydrothermal sedimentary

layers where pore spaces between volcanic particles

can be filled with silica gels [117], which leads to less

free water in the geochemical system. Of course, water

activity is a prominent variable in efforts to detect life

beyond the confines of Earth, as such there are many

implications of water activity for astrobiology (dis-

cussed in Box 4).

In environments with very low water activity,

hydrolysis might even require catalysis to occur. As

mentioned above, divalent ions such as Mn2+ and

Mg2+ can promote hydrolysis both in the active centre

of hydrolases and under abiotic conditions (without

enzymes). So it is possible that such ions, which are

quite abundant in hydrothermal vent/serpentinising

settings, could provide exactly the rate of hydrolysis

needed if the average water activity in a system is

small enough. At the same time, various salt ions can

actually help decrease the water activity by binding

water (hydration). Thus, a complex interplay of salts,

ions, minerals, gels, clays and water, not to mention

organic compounds themselves should these be

Box 4. Implications of water activity for astrobiology

Water activity bears directly upon theories and experi-

ments dealing with the origin of life. The search for

life on other planets or moons is guided by the search

for water [118]. When it comes to finding evidence for

ongoing rock–water interactions in appreciable magni-

tude, the moons of Saturn Enceladus and Titan have

been in the focus of research recently. The Cassini

mission has delivered spectrometric evidence for the

existence of serpentinisation on Enceladus [119]. Its

rocky interior is covered by several kilometres of liq-

uid water that are in turn covered by several kilome-

tres of ice that form the surface [120,121]. The water

is kept in the liquid state because of the gravitation of

Saturn, which constantly kneads the small moon of

roughly 500 km diameter so as to generate heat

[120,121]. Enceladus has geysers at its South pole that

spew liquid water hundreds of kilometres into space

[120,121].

During the Cassini mission, H2 was measured in the

geyser plumes of Enceladus [122]. The presence of H2,

the detection of silicate nanoparticles and models sug-

gesting an alkaline pH of Enceladus’ ocean is inter-

preted as evidence for ongoing serpentinisation under

the moon’s ice crust [120,122,123]. The plumes also

contain organic compounds. These could be either

fragments of polyaromatic hydrocarbons, that is,

breakdown products of carbon brought to Enceladus

by meteorites [124,125] or products of de novo organic

synthesis fuelled by serpentinisation [126]. Although

the exact source of the organic compounds in the

plumes is still not clear, rock–water interactions seem

to be taking place on Enceladus, meaning that there is

nothing special about the process that would limit its

occurrence to Earth. If we entertain the possibility

that life might have evolved in serpentinising systems,

rather than exclude the possibility a priori [127], the

implications for astrobiology are far reaching. Sunlight

would have little to no role in origins and that, in

turn, would expand the habitable zone in our solar

system and in newly characterised solar systems, to

regions where sunlight provides no energy. The chemi-

cal energy of serpentinisation would require only

water-reducing rocks and CO2 to unfold.
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present, figure into the water conundrum at the origin

of life.

Serpentinising systems and water
activity

Natural environments of low water activity need not

to be restricted to terrestrial surfaces, they can and

do exist in serpentinising hydrothermal systems and

thus may have been germane to the geochemical set-

ting in which life arose. Of course, low water activity

is not the only requirement that such a setting has to

meet. Nonequilibrium conditions, carbon (cells are

roughly 50% carbon by dry weight) [128], nitrogen

(cells are 10% nitrogen by dry weight) [129], as well

as sulfur and phosphorus, but perhaps most impor-

tantly a continuous source of energy was required at

origins. Serpentinising systems combine carbon,

energy and electrons in the form of CO2 and H2 in

environments replete with low water activity [130–
133]. Serpentinisation is a widespread phenomenon in

today’s oceanic crust [134,135]. Ultramafic, iron sili-

cate containing rocks react with seawater, release H2,

and are transformed into serpentine group minerals

(‘serpentinite’, Mg3Si2O5(OH)4) in the process—hence

the name serpentinisation. One of the best investi-

gated serpentinisation sites is the Lost City hydrother-

mal field, discovered near the mid-Atlantic ridge in

2001 [8]. At this geological site, Earth mantle rocks

containing an iron-magnesium silicate mineral group

called olivine are, due to magma upwelling, exposed

at the seafloor where they react with seawater to pro-

duce H2 [136].

Modern serpentinising systems harbour temperature,

pH and redox gradients [94] and provide carbon

(mostly in the form of CO2/carbonates), sulphur (H2S

and sulphide minerals), and in lesser or trace amounts

also nitrogen and phosphate [137]. A unique feature of

serpentinising systems is the continuous production of

hydrogen (H2) from water, providing the surroundings

with a constant supply of electrons, a very low mid-

point potential [138], and a chemical energy source

[139–141]. H2 production entails also a constant

renewal of iron-containing minerals that can function

as catalysts for prebiotic reactions [98,99,142,143],

among them magnetite (Fe3O4), a direct product of

serpentinisation, iron sulphides like pyrite (FeS2) or

greigite (Fe3S4) [19,21,144], and even native metal

compounds such as awaruite (Ni3Fe) [19]. Prebiotic

reactions catalysed by such minerals supposedly

started with the energy-releasing reaction of CO2 and

H2 [22] that today is still utilised by acetogens and

methanogens for growth [11,88,133,145–149].

What about water activity in serpentinising systems?

It decreases as vast amounts of sea water are con-

sumed in the interactions between seawater and olivine

and salinity in the rock pores increases [150]. The

ultramafic minerals participating in the process seques-

ter seawater, resulting in mineral hydration (hydroxide

formation) [151]. A recent in situ serpentinisation

experiment (at 280 °C and 500 bar) provided impor-

tant mechanistic insights into the interactions between

rock and water and into the influence of salinity on

free water in mineral pores and thus on water activity

[15]. Via Raman spectroscopy and microscopy, Lama-

drid et al. [15] monitored the concentration of salts

and minerals in the micropores of olivine. The forma-

tion of serpentine minerals, brucite (Mg(OH)2), mag-

netite (Fe3O4) and H2, consumes water. As the water

content in the pores decreases, the concentrations of

salts and minerals increase during serpentinisation.

Ultimately, the pores are filled with a highly concen-

trated, ‘crowded’ hydrothermal fluid with low water

activity. What Lamadrid et al. [15] describe is a situa-

tion that comes surprisingly close to what is observed

in intracellular fluids. In the geochemical microsites

they observe [15], serpentinisation stops as soon as the

water activity gets too low (meaning the salinity gets

too high) and new seawater with lower salinity has to

diffuse into the system to restart serpentinisation. The

rock volume increases during serpentinisation [139],

leading to open fractures and seawater migration into

the (micro)cracks which allows serpentinisation to con-

tinue. This scenario of fluctuating water activity resem-

bles wet–dry cycles described above. Lamadrid et al.

[15] report a kind of self-regulating system that hones

in on low water activity with the exergonic reaction

(H2 production) ceasing when water activity becomes

too low, resuming only when water is added. Chemi-

cally, water availability during serpentinisation at very

small scales of micron sized inorganic compartments

resembles ion homeostasis in modern cells at several

levels.

Within inorganic pores of ultramafic rocks, a combi-

nation of mineral surface catalysis, low water activity

and continuous supply of energy and carbon (in addi-

tion to nitrogen and other nutrients), could, in princi-

ple, lead to complex biomolecules. Such a sustained

source of specific ‘food’ and energy is required for the

emergence of autocatalytic networks, metabolism-like

chemical reaction systems that are simpler than meta-

bolism in modern cells as they support themselves

without enzymes [78]. Such reaction systems are

thought to be intermediates in the transition from non-

living to living systems [152,153]. From the geochemi-

cal standpoint, there is every reason to think that
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serpentinisation was a very common reaction on early

Earth [11,16,154,155]. The necessary ingredients are

seawater and ultramafic rocks which the early Earth

had in virtually unlimited supply [156]. Radioactive

isotope dating of the carbonate structures and sedi-

ments in Lost City show an age of at least

30 000 years for that serpentinising system. There is

enough mineral in the massif below Lost City to drive

serpentinisation for further hundreds of thousands, if

not millions, of years [139]. Rocks from former serpen-

tinising systems preserved at depth beneath the Mid-

Atlantic Ridge, where Lost City resides, revealed abi-

otically synthesised organic compounds including

amino acids and more complex molecules just recently

[157–159]. Such findings emphasise the potential of

prebiotic synthesis serpentinising systems offer. This

ultimately means that serpentinising systems such as

alkaline hydrothermal vents can provide low water

activity. Many misconceptions about vents are seated

in water activity and hydrolysis, misconceptions that

presume chemistry in free aqueous solution at

hydrothermal vents. [127,160,161].

To date, the catalytic and organic synthetic potential

of serpentinising systems, in combination with low

water activity, has not been exhausted in sufficient

detail in laboratory experiments. The effluents of

active sites such as the Lost City hydrothermal field

are regularly monitored, mainly showing simple car-

bonic acids like formate, methane and possibly acetate

as abiotic products of the redox reactions occurring

inside the porous crust [137,141,148,162]. Direct in situ

observation of the reactions within serpentinising sys-

tems in submarine crust poses immense technical chal-

lenges. But the rewards of direct observations could be

equally great, as current findings suggest that serpen-

tinising systems catalyse biomimetic reactions [157–
159]. A problem is, however, that vents are densely

inhabited by microbes and possibly bear sources of

biologically derived organic matter, such that con-

trolled laboratory experiments in sterile systems [22–
24] are needed to complement in situ chemical sam-

pling studies.

Conclusions and perspectives

Avoiding constant hydrolysis while retaining access to

hydrolysing chemical steps is pivotal for the emergence

of prebiotic chemical networks [163]. So far, most pre-

biotic CO2 fixation experiments are performed in aque-

ous solution which can block heterogeneous mineral

catalysts. From industrial processes, it is known that

water poisons mineral catalysts through hydroxyl for-

mation on their surfaces, blocking the prospective

catalysis sites [164]. This would also explain why the

yields of all aqueous CO2/H2 experiments are usually

very low in comparison with those of industrial gas-

phase chemical processes, such as Fischer–Tropsch
and Haber–Bosch synthesis [22,23,151,164,165]. On the

other hand, studies with water vapour in hydrogena-

tion processes have shown that H2O, although lower-

ing the output of industrially relevant products

including methane and larger hydrocarbons, increases

the percentage of C1–C4 ‘oxygenates’—oxidised carbon

compounds—possibly including organic acids central

in metabolism [166]. Thus, limited water poisoning

might be a manageable problem and possibly benefi-

cial as long as water activity is generally low.

Hydrolysis is often viewed as a destructive force in

prebiotic chemistry [93]. But in the context of the

mechanistic details of small-scale geochemical reactions

within serpentinising systems, hydrolysis becomes a

surprising and potentially powerful force that could

foster self-organisation in prebiotic chemistry (Fig. 2).

There are two possible roles. First, in an environment

with a constantly low water activity, hydrolysis is

impaired, transforming it from an omnipresent prob-

lem into an essential reaction that can be mediated by

divalent ions as found in modern hydrolases [67,84].

Second, under medium (not high) water activity condi-

tions, hydrolysis can be a selective driving force

towards complex molecules. Under simulated

hydrothermal (high water activity) conditions, mineral

catalysts, reductants and CO2 can generate reduced

carbon compounds including 2-oxoacids [22,23] over-

night, in the presence of activated nitrogen amino

acids also readily form [24,25]. In metabolism, amino

acids are the precursors of nitrogenous heterocyclic

compounds (cofactors and nucleobases), the starting

material and end products of protometabolic autocat-

alytic networks [31,78,153]. With high salt concentra-

tions and low water activity inside the pores of

serpentinising rocks (medium to low water activity),

peptides could form from amino acids, even at higher

temperatures [114]. Peptides then become even more

resilient against hydrolysis once they reach lengths that

permit the formation of alpha-helices and beta-sheets

[167]. Under conditions of sustained peptide synthesis

and sustained peptide hydrolysis, a selection process

sets in through which hydrolysis-resistant peptides can

accumulate [168,169], but not by virtue of faster syn-

thesis, rather by virtue of their slower hydrolysis

(‘survival of the sturdy’).

In this way, low water activity could foster synthesis

of random peptides, while hydrolytic removal of the

most labile among them would enrich for nonrandom

structures within the realm of randomly synthesised
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Fig. 2. Serpentinising systems, water activities and origins. The figure schematically depicts hydrated pores (rock-bound water, hydroxyl

groups), embedded in the olivine matrix of serpentinising systems. (A) Serpentinisation. H2 is synthesised via interactions between water

and olivine (for details see). Catalytically active minerals including magnetite (Fe3O4), iron sulphides (FeS2, Fe3S4) and Ni, Fe-alloys (Ni3Fe)

are constantly produced, whereas Fe3O4 arise from serpentinisation, and sulphides and alloys as reaction products of H2, H2S and Fe2+ or

Ni2+ ions. (B) Chemistry on mineral surfaces. With the help of such minerals as catalysts, N2 can be hydrogenated to ammonia [26–28], and

CO2 reduced to carbon compounds like a-ketocarboxylic acids [22–24]. The latter can react with activated ammonia to amino acids [24,25].

Theoretically, also thioesters could be synthesised at this stage, although this is debatable [172]. (C) Autocatalytic networks. The reduction

products could react to a variety of other N-containing carbon compounds like cofactors or nucleobases, especially in low water activity

(high salt) conditions [29,30]. Such complex monomers would fuel autocatalytic protometabolic networks [31,78,153]. (D) Mineral-assisted

polymerisation and folding. Due to high salt concentrations and low water activity inside the pores, polymers such as polypeptides can form

from amino acids [113,114]. Most folded proteins could achieve the necessary structure precision for their catalytic function without nucleic

acids as templates, merely directed by water activity and salt concentration [112]. They could concentrate substrates in their protected

interior. Here, controlled hydrolysis (e.g. via trapped Mg2+ or Mn2+ ions as shown in Fig. 1) and condensation reactions through mineral-

derived cofactors could occur. Also targeted CO2 fixation would be possible in such protein pockets, using amino acids with nucleophilic

side chains and incorporated transition metals such as Fe2+ or Ni2+ [22,23,88,173]. The micropores in ancient serpentinising hydrothermal

fields could be the earliest precursors of biological cells. All reactions described in this figure could subsequently happen in the same

micropore, but pores at different physicochemical conditions may be needed for some of the stages to evolve. So chromatographic effects

(separation of products while migrating between two different pores) should be considered.
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variants, possibly without genetic instruction. Such pep-

tides would necessarily harbour specific structural sur-

faces, hence the equivalent of multiple active sites [170],

and could in turn favour some kinetically controlled

reactions over others, thereby accelerating molecular

self-organisation. Prebiotic peptide synthesis requires a

sustained source of amino acids and energy [171], in

addition to suitable surfaces, to catalyse polymerisation

[57,97]. Serpentinising systems could provide both over

geological time scales, with survival of the sturdiest

enriching for nonrandom structures with catalytic prop-

erties of their own, as catalytically active peptides that

currently serve as elements of autocatalytic networks

preserved in microbial metabolism [78].

In summary, we have described how highly saline,

serpentinising, porous rock environments could cir-

cumvent and perhaps even modulate uncontrolled

hydrolysis in a manner analogous—similar but unre-

lated—to modern metabolism (Fig. 2). Whether these

processes could also be homologous, that is, similar by

virtue of common ancestry, is an open question for

further study.
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