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SUMMARY
Energy conservation is crucial to life’s origin and evolution. The common ancestor of all cells used ATP syn-
thase to convert proton gradients into ATP. However, pumps generating proton gradients and lipids main-
taining proton gradients are not universally conserved across all lineages. A solution to this paradox is
that ancestral ATP synthase could harness naturally formed geochemical ion gradients with simpler environ-
mentally provided precursors preceding both proton pumps and biogenic membranes. This runs counter to
traditional views that phospholipid bilayers are required to maintain proton gradients. Here, we show that
fatty acid membranes can maintain sufficient proton gradients to synthesize ATP by ATP synthase under
the steep pH and temperature gradients observed in hydrothermal vent systems. These findings shed sub-
stantial light on early membrane bioenergetics, uncovering a functional intermediate in the evolution of
chemiosmotic ATP synthesis during protocellular stages postdating the ATP synthase’s origin but preceding
the advent of enzymatically synthesized cell membranes.
INTRODUCTION

Experimental evidence for the processes of energy conservation

in the first cells on Earth is scarce, but top-down comparative

studies1–4 combined with the bottom-up construction of bio-

like nanoarchitectures5–11 render the problem tractable. Though

ATP is the universal energy currency for virtually all biochemical

or cellular activities that require energy,12,13 its synthesis is af-

forded by a single molecular species, the ATP synthase, which

converts ADP and phosphate into ATP using proton-motive

force across phospholipid membranes.7,14–19 The ATP synthase

is as universally conserved as ribosomes and genetic code,

while proton pumps that generate the ion gradients it requires

are not.20 This suggests that the ATP synthase appeared before

the last universal common ancestor (LUCA) of all cells diverged

into bacteria and archaea4,20–22 (Scheme 1A).

Bacteria and archaea are located at roots of the Tree of

Life,23,24 and their ATP synthase is conserved. But these two

prokaryotic domains have distinct membrane molecules struc-

tures20,25 and lipid synthesis pathways.26,27 Bacterial phospho-

lipid tails are straight-chain fatty acids (mainly 18 carbons), while

archaeal tail chains are branched-chain isoprenoids (mainly C20

phytanyl chains).28,29 Their unrelated biosynthetic pathways20,25

suggest that protocells before the LUCA had simpler primi-

tive lipids,30 like single-chain fatty acids31–35 or isoprenoid

acids,30,31,36 rather than double-chain phospholipid glycerol

conjugates (Scheme 1A). Fatty-acid-based protocells are, how-

ever, thought to be unable to support the chemiosmotic ATP

synthesis37,38 because primitive membranes assembled from
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short-chain or unsaturated fatty acids have high membrane

fluidity and are ‘‘leaky’’; that is, they are permeable to small mol-

ecules33 and/or protons39 and, hence, unable to maintain stable

ion gradients.

Serpentinizing hydrothermal systems provide an environment

highly conducive to chemiosmotic energy conservation.20,40

Since there was first water on Earth, serpentinizing hydrothermal

vents have continuously forced warm (40�C–100�C)41–44 alkaline
water (pH = 9–11)45 to interface with ocean water (pH = 6.5–7),46

generating stable, natural, geochemical proton and temperature

gradients40,47–49 (Scheme 1A). These proton gradients could, in

principle, serve as the evolutionary precursor of biological proton

pumps. However, this requires that protocells with abiotically

primitive lipid membranes could harness such geochemically

formed pH gradients.4 Heat flux generated by temperature gra-

dients of hydrothermal vents contributes to thermophoretic

enrichment and the assembly of amino acids, nucleotides,

and, importantly, lipids.50 Yet, the ATP synthase requires a pro-

ton-tight membrane of hydrophobic molecules with the thick-

ness of an ATP synthase membrane subunit to function.7,51,52

Fatty acids up to 18 carbons are synthesized from H2 and CO2

with simple metal catalysts under conditions of hydrothermal

vents, providing a source of primordial lipid monomers.53–57

However, the crucial question of whether membranes consisting

of such simple, abiotically formed, straight-chain lipids can

support ATP synthase function has not been experimentally

answered to date.

Here, we show that membranes consisting solely of solitary

long-chain saturated fatty acids maintain proton gradients that
rch 19, 2025 ª 2025 The Author(s). Published by Elsevier Inc. 1
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Scheme 1. The possible evolution of membrane bioenergetics and its conceptual model protocells

(A) The evolutionary relationship of bacteria to archaea suggests that prior to the last universal common ancestor (LUCA), early life went through a protocellular

stage with ATP synthase and fatty acid membranes but without proton pumps. In this stage, the ATP synthase could have been driven by geochemical proton

gradients across the interface between the primordial oceans (pH = 6.5–7) and the alkaline hydrothermal fluid (pH = 9–11) of serpentinizing hydrothermal vents.

(legend continued on next page)
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Figure 1. Proton permeability of membranes assembled with fatty acids or phospholipids

(A) pH gradients of vesicles after acid bath for 3 h at room temperature (RT; �20�C). The molar ratio of fatty acid/alcohol is 2:1. s, single chain (gray); d, double

chain (red); d-q, double chain and quadruple chain (purple).

(B and C) pH gradients of vesicles composed of phospholipids (B) or fatty acids and their derivatives (C) over time at RT. Their first point of curves starts at 1 min

after an acid bath, considering that the pH jump occurs within 1 min, due to residual HPTS outside vesicles and electrically uncompensated proton influx.61,62

Next, there are two phases of fast and slow pH decay due to the transient-pore mechanism, solubility-diffusion mechanism, and counterion flux limitation.63

(D–I) Excitation spectra of HPTS inside vesicles composed of phospholipids after acid bath over time at RT. After adding TX-100 to break vesicles, the pH outside

the vesicles was obtained. (D) dC18:1, (E) dC14, (F) dC16, (G) dC18, (H) dC18-10%qC18:1, and (I) dC18-40%qC18:1.
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power an ATP synthase to produce ATP in a minimal protocell

(Scheme 1B). Structures of membrane molecules and tempera-

ture in the assembled system can modulate membrane assem-

bly, its ability to maintain proton gradients, fluidity and ATP syn-

thesis. The results uncover an evolutionary intermediate in

primordial bioenergetics linking ATP synthase function in abiotic

fatty acid membranes using geochemically formed gradients

to ATP synthesis in biochemically synthesized phospholipid

bilayers.

RESULTS AND DISCUSSION

Long-chain saturated fatty acid membranes outperform
some phospholipid membranes in pH gradient stability
We began by investigating proton gradients. Vesicles containing

a pH fluorescent probe (8-hydroxypyrene-1, 3, 6-trisulfonic acid

trisodium salt [HPTS])19 were obtained (Figure S1). According to

the hydrothermal vent theory,1,2,4,40 protocells harnessed natural

geological proton gradients for ATP synthesis.20 Therefore, we

formed analogous proton gradients using the acid bath method,

changing pH outside the vesicles from about pH 9.5 to 6.5
(B) At the onset of membrane bioenergetics, a simple fatty acid membrane can

Subsequent adaptation to the free-living lifestyle fosters the transition from singl

(C) The structural formula of building blocks. C18:1, oleic acid; C18, stearic acid; C1

C20:br, phytanic acid; C20:brOH, phytol; dC20:br, DPhPC; dC18:1, DOPC; dC14, DM
(Figure S2). Because the chain lengths of phospholipids in mod-

ern cell membranes are typically 18 carbons,58 we mainly chose

building blocks with similar chain lengths (Scheme 1C). Consis-

tent with previous studies, long-chain unsaturated oleic acid

(C18:1) vesicles alone cannot maintain a proton gradient39; their

spectra coincide within 1 min after an acid bath and after the

addition of detergent TX-100, breaking the vesicles (Figure S3A).

A confocal laser scanning microscope (Figure S3B) and dynamic

light scattering (Figure S4) show that the acid bath did not

directly break C18:1 vesicles (Figure S5).

Next, we tested long-chain saturated fatty acid (C18) vesicles

as a reference for subsequent comparisons. Numerous C18 ves-

icles were still observed after spending 2 days in an acid bath

(Figure S6). We found that simple C18 vesicles maintain a pH

gradient over 0.35 pH units after a 3 h acid bath (Figures 1A

and S7), a pH gradient that is within the range of 0.3–0.5 pH units

measured for growing E. coli.59,60 In contrast, the pH gradient of

unsaturated double-chain phospholipid vesicles with the same

chain length (dC18:1) approaches 0 after 3 h, but its pH gradient

did not dissipate within 1 min like C18:1 vesicles (Figures 1B

and 1D). Moreover, the pH gradient of saturated dC18 is still
maintain proton gradients to drive the ATP synthesis via the ATP synthase.

e-chain fatty acids to double-chain and quadruple-chain phospholipids.

8OH, stearyl alcohol; C14OH, myristyl alcohol; C14G, 1-monomyristoyl glycerol;

PC; dC16, DPPC; dC18, DSPC; qC18:1, CL, cardiolipin.
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Figure 2. The effect of temperature on the

proton gradients and formation of proto-

cells

(A–C) The pH gradients of (A) C18, (B) C18-C18OH,

and (C) dC18 vesicles over time at different tem-

peratures: 25�C (cyan), 40�C (blue), 55�C (yellow),

and 70�C (red).

(D) Fluorescence intensity at 460 nm of C18 and

C18-C18OH vesicles prepared at different tem-

peratures: 25�C (cyan), 40�C (blue), 55�C (yellow),

and 70�C (red). Data are represented as mean ±

SEM.

(E) Scheme of the roles of temperature gradients

in alkaline hydrothermal vents for protocells.

High-temperature regions contribute to the syn-

thesis of fatty acids and the formation of vesicles,

while relatively low-temperature regions allow

maintaining proton gradients.
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over 1.6 pH units, approximately 5 times that of C18 vesicles

(Figures 1A and 1G). These findings show that doubling the chain

number or increasing the degree of saturation improves the

ability of protocell fatty acid membranes to maintain proton

gradients.

The presence of two hydrophobic chains linked to glycerol per

lipid monomer is a strictly conserved feature of both bacterial

and archaeal membranes25–29,31 and, hence, an important

evolutionary advance from protocell-type to enzymatically

synthesized membranes. To investigate the effect of further

doubling the chain number, we tested a representative cardioli-

pin (qC18:1). qC18:1 has four unsaturated tail chains, located in the

mitochondrial inner membrane and in some bacteria, where its

content reaches up to 10%–20%.64 The results show that

increasing the molar ratio of qC18:1 in dC18 vesicles increases

proton permeability (Figure 1A), while the pH gradients are still

higher compared to those in C18 and dC18:1 vesicles. Cardiolipin

is not known to be conducive tomaintaining proton gradients but

exerts regulatory roles instead.64

To explore the interval of proton permeability required tomain-

tain a proton gradient capable of energy conversion in protocells,

we tested phospholipids with shorter chain lengths. When the

phospholipid chain length decreases to 14 carbons (dC14), the

ability to maintain a proton gradient is lower than in C18 vesicles

(Figure 1A). Reconstituted ATP synthase in dC14 glycerol ester

phospholipid vesicles has previous been studied.7,14–19

Mixing fatty alcohols into fatty acid vesicles can effectively

enhance membrane stability31,65 and enhance proton gradient

maintenance (Figure 1). Increasing the chain length of fatty

alcohols can also decrease membrane permeability. Membrane
4 Cell Reports Physical Science 6, 102461, March 19, 2025
permeability of fatty acid glycerides is

greater than that of fatty alcohols, likely

due to the larger glycerol head group,

which decreases membrane tightness.

Our experiments so far have employed

bacterial-type aliphatic chains as hydro-

phobic components. To probe the

ability of archaeal-type hydrophobic tails,

we generated vesicles composed of
branched-chain fatty acids. They failed, however, to maintain

the proton gradients, although the vesicles themselves were still

observed after acid bath treatment (Figures 1 and S8). Their pH

gradients dissipated within 1 min. It is more likely that archaeal-

type fatty acids are produced by biological synthesis at archaeal

stages rather than by abiotic processes.25–29,31 Our results indi-

cate that protocell membranes composed of abiotically synthe-

sized straight-chain fatty acids can maintain proton gradients.

The fatty acids, synthesized from H2 and CO2 in serpentinizing

systems,53–56 could have served to maintain geochemical ion

gradients in the common ancestor of archaea and bacteria.4,20

Protocell membrane bioenergetics require temperature
gradients
Temperature affects the formation of long-chain saturated fatty

acid vesicles66 and their membrane permeability. C18 vesicles

at 40�C, C18-C18OH vesicles at 55�C, and dC18 vesicles at

70�C lose proton gradients within 15 min (Figures 2A–2C). How-

ever, vesicle formation is improved at 70�C, and the numbers of

obtained vesicles containing fluorescence pH probes decreases

sharply with decreasing temperature (Figures 2D and S9). The

precipitation of C18 or C18-C18OH was not significant at 1 mM,

and numerous vesicles were still observed after cooling down

from 70�C to room temperature (RT) (Figure S10).

While the formation of long-chain saturated fatty acid vesicles

requires higher temperatures (70�C), maintaining proton gradi-

ents requires lower temperatures (40�C). The requirement of

different temperature ranges for thermophoretic concentration

mechanisms,50 vesicle formation, and ion gradient maintenance

implicate an environment with temperature gradients as the site



Figure 3. ATP bioenergy synthesis of model

protocells reconstituted with ATP synthase

(A) Fluidity of membranes assembled with fatty

acids or phospholipids. The GP value of vesicles

at room temperature (RT; �20�C). s, single chain

(gray); s-d, single chain and double chain (cyan);

d, double chain (red); d-q, double chain and

quadruple chain (purple).

(B) Relative apparent ATP synthesis rate of vesi-

cles reconstituted with ATP synthase after base

bath at RT. The rate is calculated based on the

slope of the initial 100 s of ATP production over

time, using the rate of C18 as the reference. s-ATP,

single-chain fatty acids reconstituted with ATP

synthase (gray); s-d-ATP, single-chain fatty acids

and double-chain phospholipids reconstituted

with ATP synthase (cyan); d-ATP, double-chain

phospholipids reconstituted with ATP synthase

(red); d-q-ATP, double-chain and quadruple-chain

phospholipids reconstituted with ATP synthase

(purple). Data are represented as mean ± SEM.
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of bioenergetic origin.67 The naturally existing temperature

gradients (40�C–75�C)41 in vents of serpentinizing hydrothermal

systems68 satisfy the temperature, ion gradient, and lipid mono-

mer synthesis conditions required for ATP synthase function

(Figure 2E).

The temperature of primordial ocean is still discussed. Some

argue that primordial ocean reached up to 70�C 3.5 billion years

ago,42 while recent findings suggest that primordial oceans had

more mild temperatures.44 Our results show that both fatty acid

and phospholipid vesicles fail to maintain proton gradients at

high temperatures, which would preclude their function in

chemiosmotic ATP synthesis. This suggests that prior to the

origin of enzymatic lipid synthesis, the transition from soluble en-

ergy-conserving reactions to energy conservation with an ATP

synthase4,20 required a mild temperature range.

Protocells reveal a trade-off betweenmembrane fluidity
and proton permeability for improving ATP synthesis
Membrane fluidity is another key factor impactingmembrane pro-

tein function.69–71 We tested themembrane fluidity of vesicles us-

ing a fluorescence probe (Laurdan).72,73 A lower generalized po-

larization (GP) value indicates higher membrane fluidity. Usually,

the GP value of normal cell membranes is about 0.2–0.8.72 Mem-

brane fluidity increases with the decreasing chain length, and the

introduction of qC18:1 has a similar affect (Figures 3A and S11).

Usually, lower membrane fluidity means lower permeability (Fig-

ures 1 and 3A), but when comparing C18 with dC18, doubling

the chain number can simultaneously improve membrane fluidity

and the ability to maintain proton gradients.

Generally, when the GP value falls below 0.3, the membranes

are in a liquid state.74 The fatty acid vesicles (C18:1, C20:br, and

C20:br-C20:brOH at RT and C18 and C18-C18OH at 70�C) at a liquid
state cannot maintain proton gradients, while the phospholipid

vesicles (dC18:1, dC20:br, and dC14 at RT and dC18 at 55
�C) at a

liquid state can do those (Figures 1, 2, S11, and S12).

We examined protocell membranes for their ability to support

and modulate ATP synthesis using reconstituted ATP synthase

(Figures 3B and S13). The results show that ATP synthase is
functional in fatty acid membranes. The ATP synthesis rate in-

creases with decreasing chain length and increasing chain

number. Increasing the molar ratio of phospholipid (dC16) in fatty

acid (C18) vesicles or cardiolipin (qC18:1) in phospholipid (dC18)

vesicles increases the ATP synthesis rate. The ATP synthesis

rate for dC16 vesicles is 4.4 times compared to that for

C18 vesicles. Meanwhile, the pH gradient at 3 h for the former

is 3.8 times higher than that for the latter. These findings indicate

the impact of protocell membrane components on protocell

energy metabolism.

The ATP synthesis rate and membrane fluidity show a positive

correlation (Figure 3), possibly because lower membrane fluidity

imparts greater obstruction to rotary catalysis of ATP synthase,

leading to a decrease in the ATP synthesis rate. The increase

of chain length in fatty acids maintains higher proton gradients

but decreases membrane fluidity in corresponding vesicles

(Figures 1A and 3A). This suggests a trade-off in protocell mem-

brane fluidity and proton permeability, limiting the lipid chain

length range in protocells that support ATP synthase function,

even in the presence of a large proton gradient.

In summary, we have shown that protocells enclosed by sim-

ple fatty acidmembranes canmaintain ion gradients and support

ATP synthesis via a rotor-stator ATP synthase. The findings

show that interactions between complex proteins and abiotically

synthesized fatty acids can support membrane bioenergetics via

harnessing natural geological proton gradients generated by

serpentinization at hydrothermal vents1,2,20,40 (Scheme 1A).

Observed differences between permissive temperatures for the

formation of vesicles and maintenance of proton gradients may

indicate that membrane bioenergetics originated in environ-

ments with natural gradients67 rather than in isotropic settings

(Figure 2E).

Fatty acid composition in protocell membranes specifies

membrane fluidity and proton permeability, properties that influ-

ence ATP synthase function, also in modern cells.51,52,75 The

evolutionary transition from abiotically synthesized fatty acid

membranes to enzymatically synthesized phospholipids with

two chains per monomer improved membrane fluidity and
Cell Reports Physical Science 6, 102461, March 19, 2025 5
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proton gradient stability to a level that has not been improved in

4 billion years, barring the appearance of tetraether lipids in

some thermophilic archaea.29

The ATP synthase, one of the most sophisticated proteins

known,75 could function in protocellular lipids before free-living

cells arose. This may explain how it is possible that bacteria

and archaea share the ATP synthase but independently evolved

their biosynthetic pathways for membrane lipids25: the primor-

dial ATP synthasemight not have required enzymatically synthe-

sized lipids to function. That such a complex protein is so ancient

might seem to present a paradox.76,77 A possible scenario is

serpentinizing hydrothermal vents where complex ATP synthase

and simple lipids were present before the emergence of free-

living cells.1–4,20–22 Primitive lipids (such as fatty acids) could

be synthesized from H2 and CO2 by geological catalysts in ser-

pentinizing hydrothermal vents.53,55 These primitive lipids self-

assembled into membranes for embedding ATP synthase trans-

lated by ribosomes.78 Then, ATPwas produced by ATP synthase

driven by geological proton gradients of serpentinizing hydro-

thermal vents as bioenergy currency to fuel the enzymatic syn-

thesis of complex lipids26,27 and other biochemical activities.

Although the catalytic function of individual proteins,79,80 and

even entire enzymatic pathways,81 can be replaced by inorganic

catalysts of serpentinizing hydrothermal systems, the ATP syn-

thase function in protocellular lipids represents a special case:

its rotor-stator catalytic mechanism has no inorganic or environ-

mental precursor, while the ion gradient that powers it does.

Among the many environments that have been suggested for

the origin of biological systems,47–50,67,68 serpentinizing hydro-

thermal systems are unique in that they generate natural proton

gradients1–4,20–22 that can power an ATP synthase in primitive

fatty acid membranes, connecting Earth chemistry and life

chemistry in energy conservation.20,40

METHODS

Details regarding the methods can be found in the supplemental

information.

RESOURCE AVAILABILITY

Lead contact

Requests for further information and resources should be directed to and will

be fulfilled by the lead contact, Junbai Li (jbli@iccas.ac.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d All data reported in this paper will be shared by the lead contact upon

request.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this

paper is available from the lead contact upon request.
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