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Molecular hydrogen is an ancient source of energy and

electrons. Anaerobic autotrophs that harness the H2/CO2 redox

couple harbour ancient biochemical traits that trace back to the

universal common ancestor. Aspects of their physiology,

including the abundance of transition metals, radical reaction

mechanisms, and their main exergonic bioenergetic reactions,

forge links between ancient microbes and geochemical

reactions at hydrothermal vents. The midpoint potential of H2

however requires anaerobes that reduce CO2 with H2 to use

flavin based electron bifurcation — a mechanism to conserve

energy as low potential reduced ferredoxins via soluble

proteins — for CO2 fixation. This presents a paradox. At the

onset of biochemical evolution, before there were proteins, how

was CO2 reduced using H2? FeS minerals alone are probably

not the solution, because biological CO2 reduction is a two

electron reaction. Physiology can provide clues. Some

acetogens and some methanogens can grow using native iron

(Fe0) instead of H2 as the electron donor. In the laboratory, Fe0

efficiently reduces CO2 to acetate and methanol. Hydrothermal

vents harbour awaruite, Ni3Fe, a natural compound of native

metals. Native metals might have been the precursors of

electron bifurcation in biochemical evolution.
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Universitätsstr. 1, 40225 Düsseldorf, Germany
3 Instituto de Tecnologia Quı́mica e Biológica, Universidade Nova de

Lisboa, 2780-157 Oeiras, Portugal

Corresponding author: Sousa, Filipa L (filipa.sousa@univie.ac.at)

Current Opinion in Microbiology 2018, 43:77–83

This review comes from a themed issue on Environmental

microbiology

Edited by Alberto Scoma and Julia Vorholt

https://doi.org/10.1016/j.mib.2017.12.010

1369-5274/ã 2018 The Authors. Published by Elsevier Ltd. This is an

open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
www.sciencedirect.com 
Introduction
The only thing we know for sure about life’s origin some

3.95 billion years ago [1] is that energy was required.

Without energy release, no chemical reactions can take

place that could ultimately lead to complex chemicals,

metabolism or primitive ecosystems [2�]. Two sources of

energy at origins are mainly discussed: ultraviolet (UV)

light emitted from the sun [3,4] and chemical energy at

hydrothermal vents [3,4]. Although UV light can be con-

veniently integrated into elegant laboratory syntheses of

organic molecules at low temperatures and pressures [5,6],

it does not connect to the microbial world (life) because no

known form of microbial physiology is powered by UV

light. From the biological standpoint, chemical energy at

hydrothermal vents, in particular the H2/CO2 redox cou-

ple, is interesting as a source of energy at origins. Why?

First, many forms of microbes use H2 as a source of

chemical energy for ATP synthesis in conjunction

with a suitable electron acceptor such as CO2 [7,8], and

H2-dependent autotrophs provided the initial primary

production that supported the first heterotrophic meta-

bolisms [9]. Second, the Earth’s crust has been generating

large amounts of H2 since there was liquid water, through

a process called serpentinization [10]. In addition, biol-

ogists have long held that anaerobic autotrophs that

reduce CO2 using electrons from H2 harbour the most

ancient forms of metabolism [11–13]. H2 dependent

anaerobic autotrophs are furthermore rich in transition

metal catalysts such as Fe and Ni [13], traits long regarded

as ancient, and hydrogenases that extract the electron pair

from H2 to provide reduction equivalents and energy that

drive metabolism forward [14].

Among the kinds of carbon and energy metabolism

known among modern microbes, the acetyl-CoA pathway

(or Wood–Ljungdahl pathway) as it is used in acetogens

(bacteria) and methanogens (archaea) appears to be the

most ancient [12]. It is the only exergonic pathway of

biological CO2 fixation known [12], all others require

energy input in the form of ATP. The intermediate

product of the pathway is a thioester, reactive compounds

that have long been thought to play an important role in

early chemical evolution [15]. In bacteria, the acetyl-CoA

pathway generates acetyl phosphate from H2, CO2 and

phosphate (Figure 1). Acetyl phosphate is an excellent

source of phosphorylation potential with a free energy of

hydrolysis of �43 kJ/mol, 30% better than ATP. Even to
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Scheme of energy conservation from ferredoxin to ATP in the acetyl CoA pathway. Redrawn after [12] incorporating intermediates in CO

generation [13] and of substrate level phosphorylation [11]. Methanogenic growth on methoxy groups from coal was recently reported by [38�].
The beige arrow indicates the requirement for electron bifurcation in the synthesis of low potential reduced ferredoxins with electrons from H2 [7].

Insights into the mechanisms of electron bifurcation were recently revealed by the structures of two bifurcating enzymes [25�,26�]. Substrates and

endproducts of the reversible reaction sequence are boxed in blue. The synthesis of the methyl group from H2 and CO2 entails energy investment,

such that net synthesis of acyl phosphate or ATP from H2 requires chemiosmotic coupling [6–8].
the level of the energy rich thioester the reaction is

exergonic:

2CO2 þ 4H2 þ CoASH ! CH3COSCoA þ 3H2O

DGo
0 ¼ �59 kJ=mol½12�:

Microbial genomes also point to the antiquity of anaero-

bic autotroph physiology. A recent study identified

355 ancient gene families that, based on their phyloge-

nies, provided insights into the physiology and habitat of

the last universal common ancestor, LUCA [16]. LUCA

lived in a hot environment rich in gasses (H2, CO2, N2,

CO) and metals, a habitat very similar to hydrothermal

vents, which existed on the early Earth [10]. It used the

acetyl-CoA pathway [16], its metabolism was rich in FeS

and thioester dependent reactions, which are enriched in

the ancient ATP-independent core of metabolism [17��].
It harboured a diversified small molecule chemistry [18],

many radical-based reactions that are dependent upon S-

adenosyl methionine (SAM), which can form spontane-

ously in vitro [19�], and it harboured features found in

microbes that today still inhabit ancient geochemical

niches [20,21].
Current Opinion in Microbiology 2018, 43:77–83 
The problem with H2 and FeS
Despite its chemical simplicity, its abundance in ancient

environments, and the clear tendency of H2-dependent

autotrophs to branch deeply in phylogenetic trees [16],

H2 has a rather severe Achilles’ heel as a source of

electrons for CO2 reduction at origins. Its midpoint

potential is unfavourable for CO2 reduction beyond the

near-equilibrium reaction with formate [22]. That is why

microbes that reduce CO2 with H2 employ flavin based

electron bifurcation [23], a biochemical mechanism that

generates reduced ferredoxins (Fd–) with a midpoint

potential on the order of –500 mV from H2 with a more

positive midpoint potential of only –414 mV [7]. Elec-

trons from H2 have to flow energetically uphill to low

potential Fd. That might appear to violate the second law

of thermodynamics, but electron bifurcation obeys the

law in that one electron from H2 is transferred energeti-

cally downhill to a high potential acceptor like NAD+ or

heterodisulfide CoB–S–S–CoM [24], while the other is

transferred uphill to Fd so that the overall energetics of

the reaction are favourable [8].

Why is that problematic? The problem with H2 in an early

evolution context is that flavin based electron bifurcation
www.sciencedirect.com
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is an elaborate physiological process that requires sophisti-

cated proteins [25�,26�] working in concert with other

proteins [7] as an energy metabolic pathway to reduce

Fd (for reducing CO2). This presents a familiar chicken-

and-egg type paradox, namely how was CO2 reduced with

H2 before there were proteins to catalyze electron bifurca-

tion? One might counter that if early CO2 fixation took

place at hydrothermal vents, then electron bifurcation was

not needed, because there was plenty of natural FeS around

that could do the job of Fd– when it comes to fixing CO2.

But FeS minerals do not really solve the problem, because

FeS has its own, different issues. FeS clusters in proteins

are one electron donors, with iron undergoing Fe2+ to Fe3+

valence changes. The steps of biological CO2 reduction in

autotrophs are always two electron reactions [12]. In biol-

ogy, the electrons from Fd– are donated to C in CO2 via

metals that readily undergo two electron reactions, such as

Ni, Mo, or W atoms coordinated in proteins or cofactors

(Figure 2), or electron pairs are donated via hydride

transfer from organic cofactors like NAD(P)H [12].

Huber and Wächtershäuser [27] obtained excellent yields

(40 mol%) of the thioester methyl thioacetate from

CH3SH and CO using FeS, Ni2+ and Fe2+ salts, emulating

the central anabolic reaction of the acetyl CoA pathway,

but no one has reported genuine success involving FeS or

other Fe2+ species as a reductant for CO2 in an early

evolution context, electrochemical experiments where

external voltage is applied aside [28]. Could it be that

in the beginning, CO2 was not reduced directly by H2 at

all? What does nature say?
Figure 2
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Geochemical CO2 reduction
Modern hydrothermal systems provide a check for CO2

reduction in that CH4 (ca. 1 mM) [29] and other small

organic compounds including formate are present in hydro-

thermal effluent [30–32]. Those small organic compounds

are not synthesized where vent effluent discharges into the

ocean on the sea floor, rather, the organics are apparently

made deep in the crust, as organics in terrestrial vents attest

[33]. CO2 reduction in the modern crust is still not well

understood in its details, although it is thought to stem

from the same geochemical process that generates H2 in

hydrothermal effluent: serpentinization [30–32].

During serpentinization, H2 synthesis stems from the

reduction of water in hydrothermal systems via the oxi-

dation of Fe2+ that is present in the Earth’s crust in vast

amounts as iron magnesium silicates [10]. Fresh iron

silicates for serpentinization are continuously supplied

anew at spreading zones such as the mid-Atlantic ridge,

where crust emerges as magma that subsequently cools,

ultimately being recycled back into the mantle at sub-

duction zones [34]. The isotope signatures of CH4 emer-

gent from hydrothermal systems are distinct from that of

marine CO2 [29,32], the reasons for which are unclear.

The rates of methane synthesis in laboratory scale ser-

pentinization reactions so far are generally very slow [35�].
Thus, carbon is being reduced in serpentinizing systems,

by a yet unidentified mechanism.

The process of serpentinization has been going on for the

last 4.2 billion years, since there was liquid water on Earth

[10]. Both its basic ingredients — water, Fe(II)-rich rocks,
Ni2+
2 Fd–

Ni"0"

H2O

–

–

2 Fd
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cetyl-CoA synthase (CODH/ACS) synthase in the acetyl-CoA pathway,

S cluster at the active site of the CODH enzyme [13].

Current Opinion in Microbiology 2018, 43:77–83
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Box 1 The early Earth in a nutshell

There is broad agreement among geochemists and planetary

researchers that the early Earth was molten at some point, by the

moon forming impact roughly 4.4 billion years ago, at the latest

[10,33]. On the molten Earth (>1500 K), carbon that had been

brought to the freshly accreted planet was converted to CO2, almost

all of which was outgassed into the atmosphere, a small fraction

being retained in magma oceans [10,33]. By about 4.4 Ga the

magma oceans had cooled [33], by about 4.2 Ga there was liquid

water on Earth [10], some outgassed from accretion and some

delivered later by comets, and by around 4 Ga, perhaps as late as

3.7 Ga, the late heavy bombardment had come to an end [33]. By

3.95 Ga a carbon isotopic signature compatible with that produced

by the acetyl-CoA pathway appeared [1].

As it relates to the source of energy for CO2 reduction, the relevant

sequence of events is this: magma oceans in the molten phase

oxidized Earth’s early carbon to atmospheric CO2 and small amounts

of mantle CO2. Because it cooled from magma, the primordial crust

was depleted in water, consisted mostly of iron magnesium silicates

with very low water content [10,55]. As the crust cooled, water

condensed to surface oceans. Gravity pulled water into cracks in the

solid crust, creating convective currents — the process of serpenti-

nization set in. Serpentinization drew very CO2-rich water into the

crust where serpentinization took place, such that H2 was synthe-

sized in an otherwise H2-free environment and at sites where CO2

existed in hydrothermal downcurrent water and as bound CO2 (car-

bonates) in a generally dry crust. The primordial interaction between

H2 and CO2 thus probably took place deep in the crust, not at sites

where hydrothermal vent effluent reached the ocean floor in contrast

to earlier views [6]; H2 and CO2 first interacted in the presence of vast

amounts of dry rock, and at temperatures likely exceeding 100 �C.
and heat for convection — and the chemical reaction are

simple, as such the process appears to be occurring on the

Saturn moon Enceladus as well [36�]. Serpentinization is

a spontaneous process that releases chemical energy, a

notable property that it shares with microbial energy

metabolism. If serpentinization releases chemical energy,

where does the energy that serpentinization releases

come from? A look at early Earth history is instructive:

the energy comes from the molten state of the early Earth

(magma oxidizes carbon to CO2) and subsequent rock–

water interactions, which then generate H2 in the pres-

ence of CO2 (Box 1).

Metagenomics tells us that approximately half of today’s

biomass lives in the crust in rocky, H2 rich environments

[37] and that substantial components of the modern

subsurface biomass lives from the H2/CO2 redox couple

as acetogens and methanogens [38�], which fuel subsur-

face primary production. Today, microbes in the crust can

also grow from organic carbon deposits such as coal [39��],
but that was not an option 4 billion years ago. Another

main difference between today’s crust and the primordial

crust is that about half the water on Earth (i.e., roughly the

volume of the ocean) is bound in the modern crust (and

mantle), brought there by submarine hydrothermal activ-

ity [34]. The flipside of that coin is that the primordial

oceans were twice as deep as today’s [34], meaning that

land for warm little ponds was probably in short supply.
Current Opinion in Microbiology 2018, 43:77–83 
Whence electrons, if not H2 or FeS?
Serpentinization alters the rocks that host hydrothermal

activity. A very notable component of hydrothermally

altered rocks is the mineral awaruite. Awaruite is an

intermetallic compound with the formula Ni3Fe (or

Ni2–3Fe): native transition metals with oxidation state

zero. It is a normal constituent of serpentinizing hydro-

thermal systems [35�,40], formed there naturally during

serpentinization under conditions where high H2 activi-

ties of �200 mmol/kg [41] reduce the divalent metal ions.

Almost 20 years ago Horita and Berndt [42] reported that

Ni3Fe could catalyze the synthesis of methane in mmol/

kg amounts from H2 and CO2 [42] in simulated hydro-

thermal conditions (200–400 �C, ca. 50 MPa) although it

cannot be excluded that awaruite was the reductant rather

than the catalyst, at least in part. They also reported that

after 1–2 weeks at lower temperature (200 �C) carbon

compounds of oxidation state intermediate between CO2

and CH4 were obtained in amounts similar to or exceed-

ing those observed for CH4. Guan et al. [43] showed that

Fe0 in the presence of salts will reduce CO2 to CH4,

C3H8, CH3OH and C2H5OH in the 10–70 mM range at

room temperature. He et al. [44] reported reduction of

CO2 to formate and acetate in the 1–10 mM range using

nanoparticular Fe0 at 80–200 �C. Moreover, Muchowska

et al. [45��] recently showed native iron to accelerate

and promote reactions of the reverse citric acid cycle

(Figure 3). The message is that native metals can effi-

ciently reduce CO2. That is not the case for either H2 alone

or for FeS minerals. The native metals are interesting.

Awaruite is today synthesized where H2 is produced and

where organic compounds are being made. Are native

metals involved in geochemical CO2 reduction, and were

they involved in primordial CO2 reduction? Considering

the mechanism proposed by Steve Ragsdale [13] for

acetyl-CoA synthesis in acetogens (Figure 2), the active

Ni species for CO2 reduction in the (4 billion year old)

biochemical reaction is formally Ni0. The electrons are

delivered to the enzyme one at a time via FeS clusters in

Fd–, but are delivered to carbon as a pair. The Fe2+

species in FeS clusters perform one electron chemistry,

but the two electron carbon reduction reaction is per-

formed by the transiently native metal. This might be a

clue about ancient life.

Microbes always have the last word
What do anaerobic microbes say about native metals?

Basically they say ‘yes, please’, and they are the source of

much corrosion to things made of steel, as recently

surveyed by Enning and Garrelfs [46]. Early reports

showed that methanogens grow from Fe0 and CO2

[47], but questions remained whether the growth was

really from iron or just from H2 generated by interaction

of iron with water. Dinh et al. [48] then showed that

methanogens grew rapidly on native iron as an electron
www.sciencedirect.com
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Figure 3
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The acetyl-CoA pathway and the incomplete reverse citric acid cycle as the core carbon end energy metabolism in some modern microbes and

the first microbes, modified from Ref. [6] to include the energetic impediment imposed by flavin based electron bifurcation in ferredoxin reduction

with electrons from H2 [7] and updated to include new information. Participation of FeS or FeNiS clusters is indicated using database information

for the corresponding enzymes indicated in Fuchs [12]. Note the paucity of ATP-dependent steps and the acyl phosphate/ATP-generating steps,

indicated with ATP next to the reaction (see also Ref. [17��]). Circled numbers at reactions indicate that the non-enzymatic laboratory reaction has

been reported as follows. (1) Kitani et al. reported that ATP is readily generated from acetyl phosphate and ADP using only Fe3+ [57] or Fe2+ [58]

as catalysts. (2) Wächtershäuser and Huber reported the divalent metal ion-catalyzed synthesis of acetyl thioesters from CH3SH and CO [26�]. (3)

Muchowska et al. showed these steps to proceed spontaneously in vitro using native metal and metal ion catalysts [45��]. (4) Weber [56] reported

the synthesis of pyrophosphate from an acetylthioester and Pi, whereby the presence of acetyl phosphate was inferred but not directly shown [6].

(5) Varma et al. [54��] recently demonstrated synthesis of metal bound methyl groups and synthesis of pyruvate from CO2 with native metals as

the source of electrons. The free energy of hydrolysis for acetyl phosphate (–43 kJ/mol) is greater than that for ATP (–31 kJ/mol) [6]. In the context

of early biochemical evolution, reactions that are today coupled to ATP hydrolysis would be thermodynamically even more favourable if coupled to

acetyl phosphate (or other acyl phosphate) hydrolysis, an argument in favour of acetyl phosphate as a primitive energy currency [6,59]. The

involvement of reductants other than Fd– in the enzymatic reaction is indicated with [2H]. Abbreviations: CODH/ACS, carbon monoxide

dehydrogenase/acetyl-CoA synthase; WL, Wood–Ljungdahl; PFOR, pyruvate ferredoxin oxidoreductase.
source, suggesting that H2 was not involved as an inter-

mediate. More recently, Tan et al. [49] showed that

Methanosarcina barkeri will grow on Fe0 as an electron

source, but only when deprived of standard electron

donors such as CH3OH or H2.

The molecular mechanisms of microbial electron extrac-

tion from Fe0 are so far elusive. Lohner et al. [50] reported

Fe0 oxidation by methanogens in the presence of exter-

nally applied voltage. The results suggested that metha-

nogens can access electrons from Fe0 via routes that do

not involve H2. More recent results by Deutzmann and

colleagues using applied potentials suggest that
www.sciencedirect.com 
methanogens might acquire electrons from Fe0 via extra-

cellular enzymes that oxidize the native metal to standard

electron sources such as H2 or formate [51,52]. There are

many reports about anaerobic growth on iron, many

involving methanogens or sulfate reducers [46]. But

acetogens?

Kato et al. [53�] recently isolated acetogens from the

genus Sporomusa (firmicutes) that grow on native iron

without externally applied potentials. Most acetogens

that Kato et al. [53�] tested do not grow on iron as the

electron source, indicating the presence of genetically

specified mechanisms to access electrons from Fe0, in line
Current Opinion in Microbiology 2018, 43:77–83
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with the conclusions of Dinh et al. [48] for sulfate reducers

and methanogens. For sulfate reducers, the terminal

acceptor of electrons from Fe0 can be a sulfur compound

or CO2, for acetogens and methanogens, the terminal

acceptor is CO2. The proteins, cofactors and mechanisms

involved in Fe0 oxidation are still unknown [46,52,53�]. It

is possible that non-enzymatic reactions of Fe0 with CO2

such as those generating formate, methanol, and acetate

in the laboratory [43,44] play a role in microbial growth on

iron. Very recent work reports the non-enzymatic synthe-

sis of pyruvate from aqueous CO2 and Fe0 under mild

hydrothermal conditions [54��].

Conclusions
As usual, nature leaves us with observations and ques-

tions. Is the oxidation of native iron (and other metals) an

ancient trait, preserved from the very earliest phases of

biological CO2 reduction and is it prevalent in hydrother-

mal vents, where Ni3Fe is still made today? The two

electron iron oxidation reaction Fe0 ! Fe2+ + 2e– has a

midpoint potential of Eo
0 = –470 mV [53�], more negative

than that for hydrogen H2 ! 2H+ + 2e–, with Eo
0 = –

410 mV. Might anaerobic autotrophs that oxidize Fe0

short circuit flavin based electron bifurcation to generate

their low potential reduced ferredoxins? If so, they still

would have to direct two electron (Fe0) to one electron

(FeS clusters in Fd–) reactions. The physiological reac-

tions by which microbes access Fe0 and other native

metals as electron sources might uncover hints about

early life, possibly even probing a phase of physiological

evolution before there was genetically encoded electron

bifurcation.
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