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Life arose in a world without oxygen and the first organisms were anaerobes. Here we investigate the gene
repertoire of the prokaryote common ancestor, estimating which genes it contained and to which lineages of
modern prokaryotes it was most similar in terms of gene content. Using a phylogenetic approach we found that
among trees for all 8779 protein families shared between 134 archaea and 1847 bacterial genomes, only 1045
have sequences from at least two bacterial and two archaeal groups and retain the ancestral archaeal-bacterial
split. Among those, the genes shared by anaerobes were identified as candidate genes for the prokaryote common
ancestor, which lived in anaerobic environments. We find that these anaerobic prokaryote common ancestor genes
are today most frequently distributed among methanogens and clostridia, strict anaerobes that live from low free
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Methanogens energy changes near the thermodynamic limit of life. The anaerobic families encompass genes for bifunctional
Acetogens acetyl-CoA-synthase/CO-dehydrogenase, heterodisulfide reductase subunits C and A, ferredoxins, and several
Anaerobes subunits of the Mrp-antiporter/hydrogenase family, in addition to numerous S-adenosyl methionine (SAM)
Autotrophy dependent methyltransferases. The data indicate a major role for methyl groups in the metabolism of the prokary-

ote common ancestor. The data furthermore indicate that the prokaryote ancestor possessed a rotor stator ATP
synthase, but lacked cytochromes and quinones as well as identifiable redox-dependent ion pumping complexes.
The prokaryote ancestor did possess, however, an Mrp-type H"/Na™ antiporter complex, capable of transducing
geochemical pH gradients into biologically more stable Na*-gradients. The findings implicate a hydrothermal,
autotrophic, and methyl-dependent origin of life. This article is part of a Special Issue entitled ‘EBEC 2016: 19th
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its root, the presence and absence patterns at the root giving an estimate
of Luca's gene content [6,27,46,73-75,81,112]. The models that one as-
sumes for gene gain and loss have a considerable impact on the inferred
genome of Luca [23,24,46,73,100] as does the selected reference tree
[31] and the genome collection of the study.

In early investigations of Luca gene content, Luca was considered as
the last common ancestor of bacteria, archaea and eukaryotes [115].
More recent findings have eukaryotic ribosomes branching within the
archaea, rather than as their sister [22,87,108,114], such that in the
more modern “two domain” trees, Luca is the last common ancestor of
prokaryotes. To stress that, one could introduce the term last prokaryot-

“It must be clear that all the changes and the original life forms are
dependent upon energy as well as material capture and flow.”
[Williams and Fradsto da Silva [113]]

1. Introduction

One of the more intriguing enterprises in comparative genomics is to
infer the nature of the last universal common ancestor, also called Luca,

on the basis of gene content [46,57,73,6,74,75,81,112]. The standard ap-
proach to the problem is to generate a reference tree - sometimes called
a backbone tree or species tree — and then to plot the distribution of
gene families, usually the COGs, or clusters of orthologous groups
[110] onto the leaves of the tree and then to infer presence and absence
patterns along the inner branches and nodes of the tree, right down to

Abbreviations: HCO, heme-copper oxygen reductase, cytochrome c oxidase, complex
IV; LGT, lateral gene transfer; NOR, nitric oxide reductase; WL, Wood-Ljungdahl; SAM,
S-adenosyl methionine; SLP, substrate level phosphorylation.
* Corresponding author.
E-mail address: filipa.sousa@hhu.de (F.L. Sousa).
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ic common ancestor, or Lpca. But new terms for established concepts are
seldom helpful, and Luca means different things to different people any-
way. Here we stick to the term Luca, but we use it here to mean the last
common ancestor of prokaryotes, which in our view of early evolution
was not a free living cell, but rather was an entity that had the genetic
code, that had proteins, that had ribosomes and an ATPase [106], that
could make DNA as a stable repository for retrievable information, but
probably could not replicate DNA as chromosomes [51,53], and that -
we posit — probably was contained within naturally forming inorganic
compartments as chemical confines of a geological structure like a hy-
drothermal vent, which supplied the reduced carbon and continuous

0005-2728/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


http://crossmark.crossref.org/dialog/?doi=10.1016/j.bbabio.2016.04.284&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.bbabio.2016.04.284
mailto:filipa.sousa@hhu.de
http://dx.doi.org/10.1016/j.bbabio.2016.04.284
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sciencedirect.com/science/journal/00052728
www.elsevier.com/locate/bbabio

1028 F.L Sousa et al. / Biochimica et Biophysica Acta 1857 (2016) 1027-1038

chemical disequilibrium (energy supply) that Luca needed to get orga-
nized in the first place [65,66,59,107]. But irrespective of where and
how it arose, newer phylogenetic data indicate that eukaryotes need
to be excluded when it comes to estimating the gene content of Luca.

Excluding eukaryotes has an immense effect on Luca gene content
estimation. This is because current views and current data have it that
eukaryotes arose from a symbiosis of two prokaryotes, the bacterial an-
cestor of mitochondria and its archaeal host [1,22,54,58,64,90], and
there are only about 2585 gene families that eukaryotes share widely
with prokaryotes [55]. By including eukaryotes in Luca gene content
estimation, one would be excluding all enzymes specific to anaerobic
chemolithoautotrophy, all enzymes specific to anoxygenic photosyn-
thesis, all enzymes specific to sulfate reduction, and all enzymes specific
to all biochemical pathways that eukaryotes do not possess, which
comprises the vast majority of genes distributed across prokaryotic ge-
nomes. Eukaryotes possess only a very, very small sample of prokaryotic
energy metabolic diversity [120] and an even smaller sample of pro-
karyotic gene diversity in general [55]. It is thus important to estimate
Luca gene content based upon all prokaryotic genes, not just the narrow
sample of genes that eukaryotes inherited from prokaryotes at eukary-
otic (and plastid) origin [55].

Removing the restriction that the inclusion of eukaryotes introduces
into Luca gene content estimation is easy, one just excludes eukaryotic
gene from the set to be considered for Luca inference. Far more prob-
lematic, however, is the issue of lateral gene transfer. This is because -
even in studies that exclude eukaryotes from Luca inference - many
studies score genes as present in Luca if the genes are present in several
archaea and one (or more) bacterium, or present in several bacteria and
one (or more) archaeon [9]. But such genes could easily be transdomain
lateral gene transfers and not holdovers from Luca at all. In haloarchaea
alone, there are more than 1000 well-documented cases of genes that
were acquired from bacteria via transdomain lateral gene transfers
[76]. In a broader sample of archaeal lineages, Nelson-Sathi et al. [77]
identified more than 6000 cases of transdomain lateral gene transfers.
In prokaryotes, LGT is not only frequent [10,45,50,61] but it also played
an important role in prokaryote lineage diversification [77].
Transdomain LGT generates gene distribution patterns that complicate
the inference of Luca's gene content.

In an insightful paper, Kannan et al. [46] clearly outlined the prob-
lems that LGT introduces regarding Luca: If a gene family was invented
relatively late in evolution, in a particular bacterial lineage, and then
transferred across broad taxonomic boundaries (for example from bac-
teria to archaea or vice versa), then its phylogenetic distribution would
erroneously mimic presence in Luca. If not recognized as LGTs, such
genes lead to a vastly (and artefactually) inflated Luca genome content.
If such interdomain LGT is widespread, reconstructing Luca's gene
content becomes tedious. How to identify transdomain LGTs so as to
remove their inflating effects upon Luca gene content estimation? We
have a suggestion.

We recently reported a clustering and phylogenetic analysis of
over 6 million genes from 1891 prokaryotic genomes, focusing on
genes shared by archaea and bacteria [77]. We found that interdomain
LGTs from bacteria to archaea vastly outnumbered gene transfers
in the other direction and that gene acquisitions from bacteria corre-
spond to the origin of several major archaeal groups [77]. In that
study, 4705 protein families showed extensive interdomain LGT, and
another 4397 protein families were identified where archaea and bacte-
ria are monophyletic in the corresponding phylogenetic tree. Gene
presence in archaea and bacteria, in addition to monophyly of archaea
and bacteria, is the minimal condition that should be fulfilled for
genes that were present in Luca but not subject to interdomain LGT.
Among the 4397 protein families reported in which archaea and
bacteria are monophyletic, 3347 cases represent fairly obvious
interdomain LGTs in that the genes are widespread in bacteria but
present in only one archaeal lineage [77]. The remaining 1045 genes
show archaea and bacteria to be monophyletic but show no obvious

signs of interdomain LGT. This set of genes is, in principle, a candidate
list for genes present in Luca but not transferred between domains
since the divergence of bacteria and archaea. These 1045 genes are
therefore of interest and compose our starting point for the functional
analysis of how the primordial ancestor of bacteria and archaea made
a living.

Yet there still might be some gene families among those 1045 that,
despite bi-domain presence and domain monophyly, were subject
to interdomain LGTs that went undetected in our earlier report. For
example, oxygen dependent enzymes can hardly have existed in Luca
because life arose in a world without oxygen [42,56,67], but they
might have been passed around promiscuously after the advent of oxy-
genated environments. Because Luca had to be an anaerobe (oxygen
being a biological product), we can introduce one more criterion for
Luca presence: oxygen dependent enzymes and pathways cannot
have been present in Luca, such that enzymes and pathways specific
to, or typically found among, aerobes (but not in anaerobes) can be ex-
cluded from Luca's gene set. To gain insights on the primordial metabo-
lism of the common ancestor of bacteria and archaea before its
diversification into the bacterial and archaea lineages, we set out here
to identify protein families that span the archaeal-bacterial division,
that were not subject to interdomain LGT, and that are preferentially
found within the genomes of anaerobes. Of course, we cannot exclude
the existence of other proteins in Luca, such as the ones widely shared
by aerobic and anaerobic organisms, or some of the ones whose evolu-
tionary history involved interdomain LGT events.

2. Methods
2.1. Aerotolerance profiling

The method described in Sousa et al. [105] was employed to identify
and classify heme-copper oxygen reductases (HCOs) and nitric oxide
reductases (NORs) across the genomes used in this study. Briefly, a
manually curated database of 1225 sequences classified as being A1,
A2, B and C type heme-copper oxygen reductases [82] or NORs was
download from HCO database and used to query the genomes of 1981
prokaryotes from our dataset (blast cut-off 25% identity, E-value
10719, alignment coverage of at least 300 amino acids). In a second
step, the obtained hits were classified as belonging to one of the five rec-
ognized enzyme types. An organism is considered aerobic if it contains
genes coding for A1, A2, B or C type enzymes and anaerobic otherwise.
Protein families were classified as aerobic or anaerobic if 90% of their
representatives and, at least 85% of archaeal organisms and, at least
85% of bacterial organisms belong to the same classification. The re-
maining cases were classified as mixed families. Results are summarized
in Supplemental Table A1 in the online version at http://dx.doi.org/10.
1016/j.bbabio.2016.04.284.

2.2. Functional characterization of protein families

Functional annotations were retrieved from COG [37], KEGG [44],
and when justified, Biocyc [17] and Brenda [95] databases. The
combined information is available as Supplemental Table A2 in the
online version at http://dx.doi.org/10.1016/j.bbabio.2016.04.284. In
the wordle representation, common words such as hypothetical-
protein, protein or subunit were removed as well as the superphyla
Proteobacteria, Firmicutes, Crenarchaeota and Euryarchaeota taxonom-
ic descriptions.

2.3. Distribution of O, dependent reactions

Reactions, reaction directionality (according to metabolic path-
ways), KEGG orthology and Brite hierarchy were parsed from KEGG's
database (June 2015) [44]. This allowed the mapping onto KEGG ge-
nomes of the reactions depending on O, as in [88].
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3. Results and discussion
3.1. Universal (or nearly so) genes

Genes that are widely distributed across prokaryotic domains were
either present in Luca before the divergence of bacteria and archaea
[27,52] or were subject to interdomain LGT [46]. We previously clus-
tered 134 archaeal genomes into 25,762 protein families and identified
their corresponding homologs among 1847 bacterial genomes [77]. In
that dataset, the genomes span, according to prokaryote systematics,
13 archaeal and 23 bacterial higher taxonomic groups respectively,
which roughly correspond to phyla (or class) and are designated for
convenience henceforth as phyla here.

If we search for nearly universal protein families using the criteria of
i) presence in at least 22 bacterial phyla (missing in only one phylum)
and at least 12 archaeal phyla (missing in only one phylum) and ii)
monophyly of the domains within the corresponding maximum likeli-
hood tree, we end up with a set of 27 nearly-universal protein families
(Fig. 1a), corresponding to the familiar set of 30-35 “core” genes for
(mostly ribosomal) proteins that are now commonly used to infer line-
age relationships in place of rRNA alone [20-22,39,108,114].

If we allow for some gene loss during evolution (or rapid sequence
divergence in some lineages) and thus opt for a less stringent distribu-
tion criterion, and furthermore relax the criterion for domain monophy-
ly, our extended protein set consists of 109 protein families that include
9 aminoacyl-tRNA synthetase families, whose complex evolutionary
history is well known [116,117], several enzymes involved in amino
acid biosynthesis and ATP synthase subunits (Fig. 1b, Table 1). This ex-
tended, or nearly universal, set corresponds very closely in content to
the 102 nearly universal trees, or “nuts”, reported by Puigho et al.
[84]), in that sense we could independently reproduce (109 genes)
their nearly universal tree set (102 genes). The core and the extended
core thus indicate the (obvious) presence of ribosomes in Luca [33,74],
an ion-gradient-dependent energy harvesting machinery [59], and the
presence of some amino acid biosynthesis.

However, neither the core nor the expanded core (or nearly univer-
sal set) deliver information regarding the type of carbon and energy
metabolism of primordial cells, because microbial metabolism has
diversified within and across lineages during 3.5 billion years of micro-
bial evolution. But the size of both the core (~30 genes) and the extend-
ed core (~100 genes) indicates that the clusters that we are using [77]
deliver universal and nearly universal gene family distributions that
correspond very well with what others have found independently
using smaller genome samples and different methods [39,84]. From
this point on, we will focus on the remaining non-universal protein
families that might have been present in Luca.

3.2. Distinction between recent and ancient protein families
In a previous study [77] we identified 4397 protein families

that retained the monophyly of archaea and bacteria in maximum like-
lihood trees (Fig. 2a). However 3347 of those correspond to protein
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families in which either i) several bacteria and only one archaeal lin-
eage or ii) several archaea and only one bacterial lineage group is
represented. We further include in this group, for thoroughness, five
protein families in which the archaeal representatives belong to
Desulfurococcales and Fervidicoccus fontis Kam984 (here it is grouped
with Desulfurococcales). The narrow phylogenetic distributions of
these 3352 protein families (present in only one group in one of the do-
mains) indicate that they correspond to interdomain LGT events that
occurred after the prokaryotic domains had already diversified into
major lineages. As such, they contain information about LGT frequen-
cies, which is not our focus here, but do not contain direct clues about
early metabolism and were excluded from our present analysis.

When we exclude those interdomain LGTs, following the suggestion
of Kannan et al. [46], what remains is a set of 1045 protein families,
containing sequences from at least two archaeal groups and at least
two bacterial groups are present in the families and where the domains
are monophyletic in phylogenetic trees. Fig. 2b shows which archaeal
lineages and which bacterial lineages harbor these Luca genome candi-
dates. Their patterns of gene sharing are not randomly distributed
among either archaea or bacteria, rather they are preferentially distrib-
uted in pairs of lineages (taxa) from each domain. These taxon pairs are
boxed and labeled with numbers in Fig. 2b: 1) clostridial and methano-
genic lineages, 2) actinobacterial and Sulfolobales lineages, and
3) deltaproteobacterial and methanogen lineages. The boxed taxon
pairs identify archaeal and bacterial lineages that share Luca candidate
genes, that is, genes that are i) present in archaea and bacteria, but
ii) not present in all bacteria and archaea (which we expect for Luca's
genes, because Luca's habitat was different from today's), iii) where
the domains do not interleave in the 1045 maximum likelihood trees,
and iv) where the gene family is present in more than one archaeal
lineage and more than one bacterial lineage (that is, lineage specific
interdomain LGTs have been filtered out). Within the Luca candidate
genes that identify the lineage pairs 1-3, the COG categories “energy
production and conversion” and “carbohydrate metabolism” are
among the most prominently represented (Table 1).

3.3. Ancient means anaerobic

However, even for these Luca candidate gene protein families, it is
still possible that domain monophyly stems from lineage specific
interdomain LGT and subsequent within domain transfer. This mecha-
nism of distribution could apply both to ancient genes present in Luca
and to later lineage specific inventions and/or later environment specif-
ic genes, for example oxygenic environments. Here we seek to identify
ancient proteins. Because Luca arose in anaerobic environments [26,
67], proteins that arose in, or are typical for, oxygenated environments
cannot be ancient, hence we would like to exclude them from the
Luca candidate gene set. If we understand the literature of geochemists
correctly, nobody can say for sure at the moment when the first oxygen
arose [62], but we can be reasonably sure that it was present in the
atmosphere roughly 2.5 billion years ago [42,99] and accumulated in
the oceans roughly 600 million years ago [62,109]. A few might disagree
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Fig. 1. Wordle representation of the most frequent functional descriptions within a) 27 interdomain nearly universal monophyletic protein families and b) 109 nearly universal protein
families. The size of the words relates to the number of times the word appears within the annotations. The larger the word, the higher its frequency.
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Table 1
Functional category of the nearly universal protein families and the 1045 families that retain the archaeal bacterial division.
Nearly universal mono. Nearly universal 1045 mono. families Anaerobic Aerobic Mixed

Cellular processes and signaling
Cell cycle control, division, chromos part. 0 1 9 0 0 9
Cell motility 0 0 9 0 0 9
Cell wall/membrane/envelope biogenesis 0 5 50 0 1 49
Defense mechanisms 0 1 49 4 1 44
Extracellular structures 0 0 1 0 0 1
Intra traff., secretion, and vesicular transport 2 2 14 0 2 12
Mobilome: prophages, transposons 0 0 21 1 0 20
Nuclear structure 0 0 0 0 0 0
Post-transl. mod., protein turnover, chaperones 1 3 33 1 4 28
Signal transduction mechanisms 0 0 25 0 2 23

Information, storage and processing
Chromatin structure and dynamics 0 0 0 0 0 0
Replication, recombination and repair 0 3 30 1 2 27
RNA processing and modification 0 0 0 0 0 0
Transcription 0 0 46 2 5 39
Translation, ribosomal struct. and biogenesis 23 34 91 6 0 85

Metabolism
Amino acid transport and metabolism 0 22 68 3 5 60
Carbohydrate transport and metabolism 0 5 75 4 3 68
Coenzyme transport and metabolism 1 7 53 3 1 49
Energy production and conversion 0 5 91 10 11 70
Inorganic ion transport and metabolism 0 4 56 2 6 48
Lipid transport and metabolism 0 1 41 0 7 34
Nucleotide transport and metabolism 0 13 15 1 2 12
Synth., transp. cat. metabolites 0 1 23 0 7 16

Poorly characterized
Function unknown 0 0 68 5 4 59
General function prediction only 0 2 117 7 12 98
Not found 0 0 60 12 4 44

Total 27 109 1045 62 79 904

[79] and argue for the presence of O, since the early Archaean. Yet de-
spite some uncertainty about when oxygen arose, we can be relatively
sure that Luca arose in a world without appreciable amounts of oxygen
[56,67], because oxygen is a product of cyanobacterial photosynthesis
involving two photosystems, which is a highly derived form of microbial
physiology, having arisen after anoxygenic photosynthesis, cytochrome
dependent respirations, fermentations and autotrophy [26,67,96].
Thus, in the search for a list of bona fide Luca candidate genes, the
next pruning step is to look for the protein families shared only by an-
aerobic organisms, meaning that we filter aerobes and proteins typical
of aerobes from the data. For this, we have to ascertain the oxygen tol-
erance or oxygen requirements of the 1981 organisms within our
dataset. How to do this in the absence of specific growth information
for each genome, and taking facultative aerobes into account?
Microbial physiology can help. To reduce O, to water, prokaryotes
use two evolutionary unrelated membrane complexes, the bd oxygen
reductase and the heme-copper oxygen reductases (HCOs, also
known as the complex IV or cytochrome c oxidase). While the bd
oxygen reductase is generally associated with oxygen detoxification or
very low oxygen environments [11], the HCOs are incorporated in
prokaryotic electron transfer chains that are much more diverse than
the canonical mitochondrial one, but, as in the case of eukaryotes, that
also promote the establishment of an electrochemical cation gradient
across the membrane to feed the universal ATP synthase [82,29]. Since
organisms that express bd oxygen reductases usually also possess
heme-copper oxygen reductases [11], one way to assess the oxygen
requirements of the organisms present in our dataset is simply to look
for the presence of HCOs in their genome. This is not trivial, though,
because HCOs are related (structurally and sequence-wise) with nitric

oxide reductases (NORs), with which they share the same general struc-
tural core of subunit I, the presence of a low-spin heme and a similar cat-
alytic center composed of a high-spin heme and a metal ion — copper in
the case of HCOs and iron in the case of NORs [18,25,105,29]. However,
instead of reducing oxygen to water, NORs perform the two-electron
reduction of NO to N,0 and are not related with aerobic respiration.
Thus, if we can effectively distinguish between HCOs (aerobic) and
NORs (anaerobic) we can distinguish at the genome level between
organisms that regularly deal with O, (aerobes, facultative aerobes,
having HCOs) and those that shun it (anaerobes, lacking HCO while
possessing NOR, or lacking both). For this we used tools developed else-
where [105] and adapted to this specific problem (see Methods). In the
present genome sample, ~67% (1332 out of 1981) of the genomes con-
tain one or more HCOs, revealing the adaptation to oxic habitats, while
~33% (649 out of 1981) of the genomes are devoid of HCOs (Table 2).
Our method sorted 18 organisms (genomes) that only contain NORs
into the anaerobic category, which is important, because of the possible
existence of NO dependent chemistry in early earth [12] and the pres-
ence of NORs at the onset of bioenergetic processes as argued by some
[78,29]. NORs are divided into two main groups, according to the nature
of their electron donor. Thus, cNORs represent the enzymes that use sol-
uble electron donors such as cytochrome c, HiPIPs or cupredoxins and
gNORs represent the enzymes which oxidize quinols [29]. gNORs have
representatives in the two prokaryotic domains although their presence
in Archaea can be both attributed exclusively to two interdomain LGT
events, one to Crenarchaeota and one to halobacteria [14,38] or vertical
inherence, multiple losses (except in some Crenarchaeota organisms),
and an additional LGT of bacterial qNORs to halobacteria [29]. Regarding
cNORs, only one sequence has been identified so far within Archaea [29]

Fig. 2. Inter-domain gene sharing and aerobic profile network of families that retain the archaeal bacteria division. Number of genes shared between archaeal and bacterial organisms
A) within the monophyletic 4397 protein families and B) within the remaining 1045 monophyletic protein families after removal of obvious interdomain LGTs. Each cell in the matrix
indicates the number of genes (E-value <10~ '° and >25% global identity) shared between the protein families of 134 archaeal and 1847 bacterial genomes whose tree retain the
archaea-bacteria division (scale bar at right). C) Inter-domain gene sharing network in terms of the aerobic classification of the organism pairs. Panel A is adapted from [77].
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and the phylogenies of this subfamily, as the authors recognize, are
prone to change over time.

By the HCO criterion, aerobes are present in three archaeal phyla
in our sample (Thaumarchaeota, Crenarchaeota, and Euryarchaeota).
HCOs are widely distributed among crenarchaeotes, being present
in all 16 members of the Sulfolobales sampled, among Thermoproteales
(6 out of 13 Pyrobaculum species) and one member of the
Desulfurococcales. By contrast, among the euryarchaeotic genomes sam-
pled, only Halobacteriales and one member of the Thermoplasmatales
(Picrophilus torridus DSM9790) contain genes coding for HCO (Table 2).
The existence of functional HCOs in halobacteria is well documented
[121,122] as is the identification of large influx of gene transfers from bac-
teria to the halophiles [89] and to the halophile common ancestor |76,
118], that transformed an ancient methanogen into an oxygen-respiring
heterotroph. Interestingly, a strictly anaerobic, acetate-oxidizing S°-
reducing haloarchaeon has been sequenced [104], showing that aerobic
respiration is not anymore a universal feature of the haloarchaea and
underscoring ongoing metabolic diversification and gene loss within
haloarchaea.

Within bacteria, HCOs are present in genomes from 19 out of the
23 bacterial groups, although with different densities of distribution.
While aerobic (and facultative aerobic) organisms dominate the
proteobacterial, cyanobacterial and actinobacterial lineages, the major-
ity of the bacterial genomes sampled belonging to the fusobacteria,
thermotogae, aquificae, negativicutes, tenericutes, chlamydiae and
spirochaetes groups do not contain detectable HCOs.

Having a genomic proxy for oxygen tolerance among organisms
(genome lineages) within the present sample allows us to classify
the domain pairs as anaerobes, oxygen tolerant, or mixed (Fig. 2c,
Table 2). Of the three most frequent domain pairs, pair 1 contains
methanogen (anaerobes) or anaerobic lineages derived from
methanogens together with clostridia (anaerobes), pair 2 contains
Sulfolobales (aerotolerant) and Actinobacteria (aerotolerant), while
pair 3 contains deltaproteobacterial (mixed aerotolerant and anaer-
obes) and methanogen (anaerobes) or anaerobic lineages derived
from methanogens. The pairs also allow us to separate the protein fam-
ilies into aerobic (recent), anaerobic (ancient) or mixed protein families.

3.4. Who is new (aerotolerant), who is old (anaerobic)?

HCOs allow us to sort genomes into categories of aerotolerant
(having HCOs) or not (lacking HCOs). But the exercise here is to classify
protein families as being typical for aerobes or anaerobes. In a simple
scheme, we could just say that proteins encoded in genomes labeled
as anaerobic should correspond to anaerobic protein families and
those families having members that occur in aerotolerant genomes
(having HCOs) should be excluded from the LucaGC set. But that criteri-
on is too strict and will falsely exclude many anaerobic protein families,
because i) they might be present in facultative anaerobes, and ii) they
might have been subject to recent LGTs into aerotolerant species but
have not yet been lost.

This presents a difficult problem that readily lends itself to years of
parameter space exploration, recurrent adjustments, and getting
bogged down in endless minutiae of calculations. We took a pragmatic,
albeit in some aspects somewhat arbitrary, approach. For a protein fam-
ily to qualify for designation as an anaerobic family, we chose as our first
(arbitrary) criterion that least 90% of all genes present in the family be-
long to organisms devoid of HCOs. To ensure a similar representation of
archaea and bacteria in terms of anaerobic organisms, we included an
additional filtering to consider only the protein families where at least
85% of the archaeal organisms represented are anaerobic and at least
85% of the bacterial organisms are anaerobic. This has the effect of ex-
cluding protein families whose high anaerobic score is due to an over-
representation of anaerobic organism from one domain versus the
other. Conversely, the criteria of at least 85% of archaeal organisms
and 85% of bacterial organisms represented containing HCO were used

Table 2
Taxonomic distribution of HCOs within 1981 genomes.
Groups Aerobic Anaerobic N. genomes
Archaea
Others
Korarchaeota 0 1 1
Thaumarchaeota 2 0 2
Nanoarchaeota 0 1 1
2 2 4
Crenarchaeota
Thermoproteales 6 7 13
Desulfurococcales® 1 13 14
Sulfolobales 16 0 16
23 20 43
Euryarchaeota
Thermococcales 0 14 14
Thermoplasmatales 1 3 4
Archaeoglobales 0 4 4
Methanobacteriales 0 8 8
Methanococcales 0 15 15
Methanomicrobiales 0 6 6
Methanocellales 0 3 3
Methanosarcinales 0 10 10
Halobacteriales 23 0 23
24 63 87
Bacteria
Clostridia 4 105 109
Bacilli 137 151 288
Negativicutes 0 6 6
Tenericutes 0 47 47
Planctomycetes 6 0 6
Chlamydiae 4 34 38
Spirochaetes 7 39 46
Bacteroidetes 55 22 77
Actinobacteria 166 41 207
Chlorobi 5 6 11
Fusobacteria 0 5 5
Thermotogae 0 15 15
Aquificae 8 2 10
Chloroflexi 10 6 16
Deinococcus-Thermus 17 0 17
Cyanobacteria 44 0 44
Acidobacteria 8 0 8
Deltaproteobacteria 31 17 48
Epsilonproteobacteria 72 2 74
Alphaproteobacteria 204 4 208
Betaproteobacteria 120 3 123
Gammaproteobacteria 374 41 415
Other bacteria 11 18 29
1283 564 1847
Total 1332 649 1981

@ Fervidicoccus fontis Kam984 (Fervidicoccales order) is grouped within
Desulfurococcales order.

to identify protein families as aerotolerant. What about the other
protein families beyond these thresholds? Could they also be Luca can-
didate genes? Some might. We recognize that we might be excluding
both “aerotolerant” and “anaerobic” protein families from these groups,
this initial approach to filtering LGTs can probably be improved upon in
future applications.

Using these criteria, 79 protein families were classified as
“aerotolerant”. The majority of the taxonomic distribution of the Luca
candidate genes that identify aerotolerant taxon pairs identify
Sulfolobales, Halobacteriales, Actinobacteria and Proteobacteria
(Fig. 3b). In terms of functional annotation, these Luca candidate
genes consist of mainly cytochrome and copper-containing related
proteins, dioxygenases, and some NADH- and FAD-dependent oxidore-
ductases (Fig 3d). That is, the Luca candidate genes that link these
aerobe-containing interdomain taxon pairs are inventions that arose
after the cyanobacterial innovation of oxygenic photosynthesis [2].
Their distributions are not likely the result of ancient vertical inheri-
tance, as Luca arose long before oxygen did.

Perhaps as a slight disappointment, but also not entirely as a
surprise, 904 of the 1045 families were classified as “mixed” with
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respect to occurrence within aerotolerant lineages. This has to do with
LGTs and facultative anaerobes and these families deserve further
inspection in future studies. What, on the bottom line, did this investiga-
tion uncover? We found two things, which we will summarize in the

Lipid

final two sections. 1) Perhaps more important than its role as a terminal
acceptor, oxygen is an outstanding oxidant that microbes learned to use
widely in many pathways. 2) At the anaerobic core of genes that reflect
vertical inheritance from the prokaryotic common ancestor, we find
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evidence for antiporter-dependent ion gradient conversion, ATP syn-
thase ion-gradient harnessing, FeS-cluster dependent soluble electron
transport, and methyl-group dependent metabolism.

3.5. What did O, do for metabolism?

The transition from an anoxic world to the emergence of oxic
environments promoted overall modifications in the environment
redox potential [26,48], changing the metal availability and leading to
the invention of new proteins and folds [49,43] that allowed the expan-
sion of the existing metabolic pathways to include oxygen-dependent
reactions [19,43,88,99]. Moreover, the irreversibility of oxygen consum-
ing reactions promoted a positive selection pressure for the transfer and
maintenance of oxygen related metabolism throughout prokaryotic
organisms. Modern genomes harbor many O,-dependent reactions
distributed across 11 metabolic pathway categories (Fig. 4).

In addition to its availability as a terminal acceptor for pre-existing
(anaerobic) respiratory chains, O, allowed several energetically de-
manding reactions to occur more readily, for example the oxidation
and cleavage of aromatic compounds by various dioxygenases [35].
Many existing biosynthetic pathways were also affected, as for example,
the O, independent (more ancient) and alternative O,-dependent (de-
rived) biosynthetic pathways for heme [13,34,40], cobalamine [91,92],
and chlorophyll [80] to name a few. About half of the O,-dependent
enzymes that we identified in the current sample of 1821 genomes
are involved in the degradation of isoprenoids and xenobiotics. Without
question, O, expanded the realm of anabolic and catabolic pathways
across genomes [88], but it did not alter the nature of the basic building
blocks of life, nor did it fundamentally alter their biosynthesis. In the
main, oxygen facilitated the oxidation of the building blocks of life,
opening up new pathways of heterotrophic growth. A similar metabolic
transition occurred at the origin of heterotrophy, as the first hetero-
trophs arose from autotrophs by learning to glean energy from the an-
aerobic oxidation of amino acids and bases at low H, partial pressures
[96].

Earth is now different from when life arose, the main difference for
microbes being that today there are oxic habitats [42,99]. Some have ar-
gued that O, or high potential acceptors like O, (for example NO), must
have existed at life's origin, the argument being that the free energy
changes associated with H,-dependent CO, reduction were not suffi-
cient to get life started [94]. O, is indeed a strong terminal acceptor for
electron transfer phosphorylation (hence valuable once life had already
evolved respiratory chains). But is it too often overlooked that the use of
oxygen comes at a huge cost. How so?

As it relates to organic compounds like amino acids and nucleic acid
bases - the substance of life - it is a curious but significant observation
that life with oxygen is energetically far more expensive than life without
oxygen [5]. The energetic costs to synthesize the cellular building blocks
under oxic conditions are on average 12.9 times higher than under
anoxic conditions [60]. This is because the reactions that generate the
basic building blocks of cells (amino acids in the main) are thermody-
namically favorable in anoxic environments but thermodynamically
unfavorable in oxidizing environments [60,70]. The reason is that
modest H, partial pressures (<10~4-10~2 atm, [111]) favor the reduc-
tion of CO, to organic compounds (which is why acetogens and
methanogens can grow) while low H, partial pressures favor the slow
oxidation of amino acids and bases back to ammonium and CO, [96],
whereas O, allows fast and highly exergonic oxidations of even
unfermentable organics, which is why wood, coal and oil burn well,
releasing heat in the process.

3.6. The ancient metabolic core: small, but strictly anaerobic
Only 62 protein families that trace to the prokaryote common ances-

tor fulfilled the criteria set here to be designated as “anaerobic” families.
Even though 62 is not a genome-sized number, it is still greater than

~30, the usual list of suspect genes used for the reconstruction of deep
phylogeny, and importantly, our list of 62 does not include either the
core (~30) or the extended core (~100). The 27 universal and the 102
nearly-universal protein families were filtered out from the ancient
anaerobic core due to their presence in both aerobic and anaerobic
organisms. At this point we have to make a distinction between pro-
karyotic interdomain monophyletic families (that is, vertical inherence
from Luca) and universal proteins, whose wide distribution with or
without interdomain LGT events (e.g. ATP synthases), were present in
Luca.

The 62 anaerobic protein families identified above are the only
remaining markers for ancient metabolism we can still retrieve from ex-
tant genomic data using this procedure. Of course, we cannot exclude
the existence of other proteins in Luca, such as the ones widely shared
by aerobic and anaerobic organisms, or some whose evolutionary histo-
ry involved interdomain LGT events. But these are the ones we identify
with this procedure. Yet these are new insights into Luca's gene comple-
ment. Furthermore, the functional classification of these 62 ancient an-
aerobic proteins goes beyond the traditionally identified informational
genes, covering a number of functional categories not previously
known about Luca (Table 1).

The Luca candidate genes shared by anaerobes are the genes that we
sought to identify at the outset of this study. The protein families that
i) still retain the ancient archaeal-bacterial division in phylogenies,
and ii) that are preferentially encoded in the genomes of anaerobes,
identify mainly methanogens and clostridia (Fig. 3a).

Here one might ask “identify them as what?” Methanogens
(Methanomicrobia and Methanococci) and clostridia (Clostridiales)
are the most frequent pairs within the 62 protein families that preserve
the archaeal-bacterial split, hence were not obviously distributed via
LGT, and that only rarely (if ever) occur in genomes that harbor HCOs.
These protein families are typical of anaerobes, whereby Luca had to
be an anaerobe. Put another way, if we acknowledge that Luca was an
anaerobe, there are only 62 protein families that we can trace as proba-
ble vertical inheritances from Luca (as opposed to LGTs) that are typical
of strict anaerobes in that they rarely, if ever, occur in genomes of
aerotolerant (facultative anaerobic) prokaryotes, and these 62 proteins
are mainly shared by clostridia and methanogens.

One might object that this observation results from the high number
of clostridial and methanogenic organisms devoid of HCOs within our
dataset. However, both archaea and bacteria contain other taxonomic
groups without HCOs, but that have far fewer Luca candidate genes
than clostridia and methanogens. The functional annotations of the
anaerobic Luca candidate genes reveal numerous methyl transferases,
subunits of the acetyl-CoA synthase complex, the soluble heterodisulfide
reductase subunits C and A, several SAM-dependent methyltransferases
and ferredoxin (Supplemental Table A2 in the online version at http://
dx.doi.org/10.1016/j.bbabio.2016.04.284.), in addition to several subunits
of the H*/Na™-antiporter MRP/hydrogenases and related complexes
within this group (Fig. 3c).

The Mrp antiporter is surprising and particularly interesting. Based
purely on comparative physiology and theoretical considerations, it
was recently proposed that a crucial step in bioenergetic evolution at
an early stage prior to the emergence of free-living cells, was the advent
of an Mrp-type H"/Na™ antiporter that could convert geochemical pH
gradients into biologically more useful Nat gradients [59]. This
antiporter, the kind common to Ech and FeNi hydrogenases [63], was
suggested to have been the first step en route to replacing geochemical
ion gradients with biologically derived ones, to generate Na™ gradients
that could be more readily harnessed by Luca's rotor-stator ATPase, yet
prior to the invention of redox-chemistry-based (electron-transport-
based) ion pumping systems [59]. Later work on simulated gradients
provided support for that view [103]. Here, in a completely independent
genome based approach, the Mrp-type antiporter suddenly turns up
among 62 genes in the ancient anaerobic core. This is surprising, but
was also predicted on the basis of bioenergetics by the theory that life
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arose at an alkaline hydrothermal vent. The present data also indicate
the absence of redox-based ion-pumping systems in Luca (Table 3),
as previously suggested [66,59,106,107]. The 27 universal and the
102 nearly-universal protein families were filtered out from the ancient
anaerobic core because they are present in both aerobic and anaerobic
organisms.

If Luca could synthesize ATP with the help of proteins that were able
to harness and transduce a geochemical pH gradient, where did the
biochemical energy come from that allowed Luca to perform protein
synthesis in the absence of chemiosmotic harnessing? It remains true
that there are only two ways in which cells conserve energy in the
form of ATP: chemiosmotic coupling and substrate level phosphoryla-
tion (SLP) [98]. Before the origin of chemiosmotic coupling, SLP would
thus have been the only option. In essence, there have been only two vi-
able suggestions for how the first cells might have harnessed energy via
SLP: a geochemical supply of carbon monoxide [32] or a geochemical
supply of methyl groups [66,68] — on the early Earth, oxidations of
organics from space will not support energy metabolism [96]. Both
proposals focus on the reactions catalyzed by bifunctional acetyl-CoA
synthase/carbon monoxide dehydrogenase (CODH/ACS), which
condenses a Ni-bound methyl group with Ni-bound carbon monoxide

(carbonyl) to generate a Ni-bound acetyl group that is removed from
the enzyme via thiolysis to generate a thioester, which is cleaved by
phosphate to yield acetyl phosphate, which phosphorylates ADP via
SLP [85,106]. Consistent with both proposals [32,66] CODH/ACS is
contained within the anaerobic core (Table 3). Additional evidence for
the existence of abiotic synthesis within alkaline vents systems comes
from laboratory experiments showing that the direct reduction of CO,
by H; in the presence of pH gradients or electric potential can lead to
the formation of formaldehyde, acetate and pyruvate [41,93,102].
Though an excellent source of energy and electrons, carbon monox-
ide has a very restricted role in biochemistry outside of energy metabo-
lism [86]. Studies of abiotic synthesis under the far-from-equilibrium
electrochemical vent conditions will help to clarify the presence or
absence of CO under these conditions [41]. Methyl groups, on the
other hand, have a very central and general role in microbial metabo-
lism, in particular in S-adenosyl methionine (SAM) and in radical SAM
enzymes, which have a myriad of functions in biosyntheses, in particu-
lar in cofactor biosyntheses [101,119]. Of the 62 proteins in the ancient
core, six (~10%) are SAM-dependent enzymes, making these the most
common class of proteins in the ancient core behind “unknown
function”. Clearly, the ancient core points to a central involvement of

Table 3
Gene annotations of the 62 anaerobic core families.
Cluster Annotation Comments
6079 radical_SAM_protein SAM methyltransferase
9248 radical_SAM_protein Pyruvate formate lyase activating enzyme EC:1.97.1.4; SAM methyltransferase
21,920 Radical_SAM_domain_protein rlmN; 23S rRNA methyltransferase [EC:2.1.1.192]; SAM
10,466 type_11_methyltransferase SAM methyltransferase
21,520 type_11_methyltransferase SAM methyltransferase
14,283 Methylase_involved_in... SAM methyltransferase
1662 50S_ribosomal_protein_L29 RP-L29, rpmC; large subunit ribosomal protein L29
1296 acetyl-CoA_decarbonylase/synthase... Acetyl-CoA decarbonylase/synthase complex subunit gamma [EC:2.1.1.245]
1321 acetyl-CoA_decarbonylase/synthase... Acetyl-CoA decarbonylase/synthase complex subunit delta [EC:2.1.1.245]
7851 ATP_synthase_subunit_c ATPVK, ntpK, atpK; V/A-type H+-transporting ATPase subunit K
4404 ferredoxin fer; ferredoxin
18,705 flavodoxin Flavodoxin
13,779 heterodisulfide_reductase_subunit_A... Heterodisulfide-reductase CoB CoM
14,009 heterodisulfide_reductase_subunit_C... Heterodisulfide reductase; CoM CoS

4789 membrane_bound_hydrogenase_subunit...

11,625 Membrane-bound_hydrogenase_MBH...
11,548 L-glutamine_synthetase
10,709 nitrogenase_iron-iron_accessory_protein...

5364 acetyltransferase

10,044 phenylacetate-CoA_ligase
23,640 NADPH-dependent_FMN_reductase
10,494 NADPH-dependent_FMN_reductase

4774 sugar_kinase

11,273 FeoA_family_protein
11,762 aldo/keto_reductase
12,136 putative_ABC_transporter

6304 citrate_transporter

16,010 cobalamin_biosynthesis_protein

14,243 cytochrome_c_biogenesis...

1071 ApbE_family_lipoprotein

6375 beta-lactamase_domain-containing_protein
4311 deblocking_aminopeptidase

22,518 YcfA-like_protein

15,732 nucleotidyltransferase

4155 PP-loop_domain-containing...

9988 regulatory_protein_MarR

23,018 type_II_site-specific_deoxyribonuclease
16,528 transposase,_IS4

10,489 ATP-dependent_RNA_helicase

15,539 CRISPR-associated_protein...

14,799 CRISPR-associated_protein...

18,976 helicase_domain_protein

20,220 helicase-like_protein

2237 xylose_isomerase_domain...

20,694 xylose_isomerase_domain...

7805 putative_YgiT-type_zinc_finger

Multicomponent Na +:H + antiporter
Membrane-bound-hydrogenase antiporter subunit

glnA, GLUL; glutamine synthetase [EC:6.3.1.2]; glutamine-synthetase
Iron-iron nitrogenase accessory protein AnfO

CoA acyl-CoA acetyltransferase

paak; phenylacetate-CoA ligase [EC:6.2.1.30]; CoA phenylacetate-CoA-ligase
FMN FAD NADH NADH-dependent-FMN-reductase
NADH-dependent-FMN-reductase

Sugar-kinase

feoA ferrous iron transport protein A

K07079; NADH aldo/keto-reductase

Putative ABC transport system permease protein
Citrate_transporter

cbiN; cobalt/nickel transport protein; cobalamin

Cytochrome c-biogenesis transmembrane protein

K09740; hypothetical protein; ApbE_family_lipoprotein
Beta-lactamase metal dependent

E3.2.1.4; endoglucanase metal metallopeptidase

hicA; mRNA interferase HicA [EC:3.1.-.-]; YcfA-like-protein
K07076; nucleotidyltransferase

ttcA; tRNA 2-thiocytidine biosynthesis protein TtcA; PP-loop
Regulatory-protein-MarR transcriptional-regulator
Type-II-restriction-enzyme type-II-site-specific-deoxyribonuclease
Transposase

CRISPR-associated-endonuclease/helicase Cas3; ATP-dependent
CRISPR-associated protein Cmr3

CRISPR-associated protein Csm1

Helicase

Helicase

Metal-dependent; xylose-isomerase-domain-containing-protein
Metal xylose-isomerase-domain-containing-protein

Zinc zinc-finger domain

16 other protein families annotated as hypothetical proteins.
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methyl groups in ancient metabolism. This is very much in line
with the predications from the theory that life arose at hydrothermal
vents: “...the biochemical system proposed [] would remain strictly depen-
dent upon geochemically provided methyl groups up until the advent of
(protein dependent) chemiosmotic harnessing” ([66], p. 1912). Recent
geochemical studies have uncovered evidence for disequilibrium of
one carbon species in the Von Damm hydrothermal field, indicating
that there are distinct kinetic barriers to methane synthesis in some
hydrothermal systems [72], such that a model for the origin of life that
requires a geochemical source of chemically accessible methyl moieties
is not asking for too much. That methyl groups have such a prominent
place in the ancient anaerobic core is interesting and possibly signifi-
cant. If vent conditions allowed methyl synthesis, then the synthesis
of thioesters and acetyl phosphate would also, in principle, be possible
[41,93,102].

Other proteins in the ancient anaerobic core, besides Mrp subunits,
ATP synthase subunits, CODH/ACS subunits and SAM dependent
enzymes include heterodisulfide reductase, an electron bifurcating en-
zyme essential to energy metabolism in methanogens [47], ferredoxin,
flavodoxin, an iron (II) transport protein, and a thiocytidine biosynthe-
sis protein involved tRNA modification. Four proteins in the list are
membrane transport proteins, which would indicate that Luca existed
in an environment where hydrophobic layers corresponding to the
thickness of a lipid bilayer existed. That makes sense because neither
the Mrp antiporter nor the rotor stator ATP synthase can function with-
out a membrane, though the membrane need not be genetically
encoded [16], as the synthesis of hydrophobic compounds at vents is
expected from thermodynamics [3] and is observed in some modern
hydrothermal systems [83,97]. Glutamine synthase, the enzyme that
introduces nitrogen into metabolism, is in the list, as are CoA-ligases
and NADPH dependent flavin reductases, transducers of one electron
to two electron transport. The latter, together with ferredoxin,
flavodoxin, electron bifurcating enzymes and radical SAM enzymes
point to a major role of one electron transport in Luca's metabolism.
But where would the reduced nitrogen come from? For life to get
started, reduced nitrogen had to be (at least locally) available, and
both transition metal catalysts [28] and hydrothermal vent conditions
[12] could have been a local source of ammonium. Moreover, the
presence of a nitrogenase accessory protein in the 62 anaerobic families
list can be an indication for the existence of an ancient nitrogenase in
Luca, as previously proposed [69].

Thus, if we i) remove interdomain LGTs as Kannan et al. [46] sug-
gested, ii) identify lineages that have the most Luca candidate genes,
and iii) distinguish between anaerobic Luca candidate genes in anaero-
bic lineages (might be ancient) and aerotolerant Luca candidate genes
in aerotolerant lineages (cannot be ancient) we are left with the result
in Fig. 3a and ¢, namely that Luca looks most similar to modern bacterial
and archaeal lineages that harbor anaerobic chemolithoautotrophs:
clostridial-type acetogens and methanogens. This is noteworthy in the
respect that acetogens and methanogens are the groups of organisms
that stand in the foreground of theories for the origin of life that are
based in microbial physiology and that connect well to geochemistry
[66,8,59,106]. The idea that life started at hydrothermal vents has
been around for 30 years [7], it continued to be further developed. In
our inference, we have ended up with something that is half-alive, a
curious but necessary intermediate in the transition from non-living
to living things.

4. Conclusions

The overall picture of core physiology in Luca that we infer from
genome sequences is almost indistinguishable from that in Fig. 1c of
Lane and Martin [59] that was obtained from comparative physiology,
bioenergetics, and theory. That two completely independent
approaches converge on the same set of proteins and functions in
early bioenergetics is noteworthy. It indicates that a version of the

hydrothermal vent theory focusing on the acetyl-CoA pathway, methyl
synthesis, acetogens and methanogens [66] possesses an element of
robustness in that it interfaces well with the physiology of anaerobic
prokaryotes [15,98], with thermodynamics [3,4], with findings from
geochemistry about serpentinization and hydrothermal vents [71,97],
and as we have shown here, with comparative genomics. Even ribosom-
al phylogenies tend to agree with the predictions of the model in that
newer metagenomic indicate a greater antiquity for methanogen-
related metabolism within the archaea than previously assumed [30],
and newer phylogenetic data put methanogenesis at the root of the
archaeal domain [67,87].

In contrast to today's oxidized and strongly oxidizing environment,
the highly reducing hydrothermal setting on a young, metal-rich, anaer-
obic Earth that we have in mind as Luca's residence [106] offers very fa-
vorable thermodynamic conditions for the synthesis of Luca's building
blocks [3,5,71,97]. When we look at Luca as an anaerobe and as the com-
mon ancestor of prokaryotes, we obtain a picture of its genome that re-
sembles clostridial acetogens and methanogens. With regard to the
most primitive forms of microbial physiology, microbiologists reached
the same conclusion 45 years ago [26], namely that methanogens and
acetogens probably represent the most ancient lineages [36]. We re-
quired 2000 genomes and powerful computers for our conclusions,
while Decker et al. just thought about it. Evidently, just thinking about
things can be a source of scientific progress.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbabio.2016.04.284.
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