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Complete genome sequences for many oxygen-respiring
mitochondria, as well as for some bacteria, leave no doubt that
mitochondria are descendants of α-proteobacteria, a finding
for which the endosymbiont hypothesis can easily account. Yet
a wealth of data indicate that mitochondria and
hydrogenosomes — the ATP-producing organelles of many
anaerobic protists — share a common ancestry, a finding that
traditional formulations of the endosymbiont hypothesis less
readily accommodates. Available evidence suggests that a
more in-depth understanding of the origins of eukaryotes and
their organelles will hinge upon data from the genomes of
protists that synthesize ATP without the need for oxygen. 
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Abbreviations
FRD fumarate reductase
PDH pyruvate dehydrogenase
PFO pyruvate:ferredoxin oxidoreductase
SDH succinate dehydrogenase

Introduction
The origins of eukaryotic cells and their characteristic
organelles, the mitochondria, are currently among the
more hotly debated issues in evolutionary cell biology. In a
recent review of the topic [1••], it was surmized that mol-
ecular phylogenetic data have “confirmed the simplest
version of the endosymbiosis hypothesis”, which addresses
the origin of aerobic ATP-producing pathways in mito-
chondria. Furthermore, it was concluded [1••] that the
hydrogen hypothesis for the origins of mitochondria, which
addresses the origins of anaerobic ATP-producing path-
ways in hydrogenosomes, does not receive support from
molecular data. The hydrogen hypothesis [2••] posits inter
alia that mitochondria and hydrogenosomes share a com-
mon ancestry — a view that is not universally accepted but
that is supported by a considerable amount of evidence.
This issue invites discussion from an alternative perspec-
tive. The purpose of this paper is to point to the diversity
of anaerobic ATP synthesis in mitochondria, to briefly
recapitulate data indicating a common ancestry of mito-
chondria and hydrogenosomes, and to raise the question of
its evolutionary significance. In principle, the anaerobic
biochemistry in these organelles could be the result of

widespread lateral gene transfers, hence fortuitous curiosi-
ties of evolution. Alternatively, it might be a commonly
inherited relic from the earliest era of eukaryotic metabo-
lism, hence a source of insight into biochemical history.
These are specific biological questions that can be posed
to microbial genome data. 

Hydrogenosomes and mitochondria:
biochemical diversity 
The simplest version of the endosymbiont hypothesis [1••]
accounts for the origin of aerobic mitochondria only — not
for the origin of anaerobic mitochondria or hydrogenosomes.
In fact, almost without exception, all endosymbiotic models
for the origin of mitochondria focus on the derivation of a nar-
row and specific subset of mitochondrial diversity — namely
typical, textbook-like, aerobic mitochondria such as those
found in cells of the human liver. 

Such organelles utilize pyruvate dehydrogenase (PDH)
for oxidative decarboxylation, a citric acid cycle to regen-
erate CoASH for PDH and to produce NADH that is fed
into the ATP-producing respiratory chain with O2 serving
as the terminal acceptor [1••,2••]. The same biochemistry
is found in the obligate aerobe Rickettsia prowazekii, the
first α-proteobacterium for which a genome sequence is
available [3••]. But Rickettsia is a highly reduced and spe-
cialized α-proteobacterium [4,5,6••] and many free-living
α-proteobacteria possess a greater spectrum of biochemi-
cal diversity than Rickettsia. Similarly, liver-type
mitochondria are highly specialized organelles [7•].
Among eukaryotes that inhabit anaerobic environments
and among those that have anaerobic stages in their life
cycle, there is a wealth of biochemical diversity in mito-
chondrial energy metabolism that classical formulations of
the endosymbiont hypothesis neither account for nor
address, arguably because they are designed to explain
the origin of an oxygen-consuming organelle. 

Specific examples of such anaerobic mitochondria include
those of the fungus Fusarium oxysporum that perform
nitrate-respiration under oxygen-limiting conditions [8,9],
and the anaerobic mitochondria of some ciliates, for which
nitrate respiration has also been reported [10]. Further
examples include fumarate respiration as found in the
mitochondria of plathelminthes [11•] and the succinate-
producing mitochondria of some trypanosomes [12•].
There are also the facultatively anaerobic mitochondria of
the nematode Ascaris suum, in which complex II of the res-
piratory chain functions as succinate dehydrogenase
(SDH) during aerobic respiration in the larval stage and as
fumarate reductase (FRD) during (anaerobic) fumarate
respiration in the adult stage, changes that are accompa-
nied by the expression of proteins both common to and
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specific for SDH and FRD activities [13]. Still further
examples include the mitochondria of the anaerobic ciliate
Nyctotherus that perform hydrogen-producing fermenta-
tions [14•], and that constitute a previously missing link
between mitochondria and hydrogenosomes [15•]. 

The diversity of pathways for ATP synthesis from pyru-
vate among anaerobic mitochondria exceeds that found
either in typical mitochondria or in the strict aerobe
Rickettsia. However, it does not exceed the diversity found
in typical, facultatively anaerobic α-proteobacteria such as
Paracoccus denitrificans [16], Rhodobacter species or any
number of species from this biochemically diverse group
[17]. Moreover, such facultative anaerobic bacteria can typ-
ically perform H2-producing fermentations just like
hydrogenosomes, which are the double-membrane bounded,
H2-producing organelles of ATP synthesis that are found
in several groups of anaerobic protists. 

Hydrogenosomes are known to occur among the tri-
chomonads [18], the ciliates [19], the heteroloboseans [20]
and the chytridiomycete fungi [21,22]. Typical hydrogeno-
somes use pyruvate:ferredoxin oxidoreductase (PFO) for
oxidative decarboxylation instead of PDH. Rather than a
citric acid cycle, they possess a two-enzyme system con-
sisting of succinate:acetate CoA transferase and
succinyl-CoA synthase to regenerate CoASH, thereby syn-
thesizing one mole of ATP per mole of pyruvate. Electrons
generated by PFO are transferred to protons as the termi-
nal acceptor via an [Fe] hydrogenase, producing H2 as the
final reduced end product [18]. Importantly, just as among
mitochondria, there are lineage-specific variations upon
this basic biochemical theme [18,23,24,25••,26••].

Hydrogenosomes and mitochondria: common
ancestry
A wealth of evidence indicates that hydrogenosomes are
anaerobic forms of mitochondria — that is hydrogeno-
somes and mitochondria share a common ancestry from a
single progenitor organelle. The nature of this evidence is
several-fold (reviewed in [23,24,25••,26••,27•]). Like mito-
chondria, hydrogenosomes of trichomonads [28] and
chytridiomycetes [29] are surrounded by two membranes,
whereby those in some ciliates even possess distinctively
cristae-like structures [30]. Like mitochondria, they are
organelles of pyruvate oxidation and ATP production [31],
as well as Ca2+ storage [22,32]. Furthermore, some have
been shown to develop a membrane potential [33]. The
mechanism of division (formation of central septum) is
similar in mitochondria and hydrogenosomes [34],
although no hydrogenosomes and only one group of mito-
chondria [35•] have been found to possess the FtsZ protein
typical of prokaryotic cell division. Like mitochondria,
hydrogenosomes import proteins with the help of transit
peptides [36] that, although shorter than typical mitochon-
drial transit peptides, are recognized by the mitochondrial
protein import apparatus of trypanosomes [37] and fungi
[38] (reviewed in [39•]). Hydrogenosomes import several

proteins that are otherwise specific to mitochondria and
that branch with mitochondrial homologues in phylogenetic
analyses, such as Hsp70, Hsp60, and Hsp10 (reviewed in
[24,25••,26••,27•,39•,40••]). Trichomonad hydrogeno-
somes possess many proteins common to mitochondria,
including the α- and β-subunits of succinyl-CoA syn-
thase [40••], an enzyme that in hydrogenosomes is
involved in the regeneration of CoASH from acetyl-CoA,
analogous to its function in the citric acid cycle of mito-
chondria. Importantly, they also possess a homologue of
the mitochondrial ADP-ATP translocase [41•].

Although most hydrogenosomes do not contain a genome
[18,42], those of the ciliate Nyctotherus ovalis do [14•]. The
16S rRNA sequence from this DNA indicates a ciliate
mitochondrial ancestry of the hydrogenosomal genome
[43]. Among the ciliates, mitochondrion- and hydrogeno-
some-bearing forms are highly interleaved in molecular
phylogenies, indicating common ancestry of the organelles
[19]. Among the fungi, hydrogenosome-bearing forms also
occur interleaved with mitochondrion-bearing forms. For
example, the hydrogenosomes of the chytridiomycete
Neocallimastix possess PFO activity and produce a mixture
of hydrogen and formate, depending upon growth condi-
tions [44]. Another example is the chytridiomycete
Piromyces, from which a number of mitochondrially related
genes have been identified via database searches with
expressed sequence tags (ESTs) [45]. 

How to account for the origin of anaerobic
organelles?
What biological models do we have that can account for the
data linking hydrogenosomes with mitochondria and for the
origin of ATP-producing pathways in anaerobic mitochon-
dria and hydrogenosomes? Clearly, since its resurrection [46]
from earlier versions, (e.g. [47]) various formulations of the
endosymbiont hypothesis over the years have focused on
the origin of ATP synthesis in aerobic mitochondria
[16,48–51,52•]. During this same period, sequences of many
mitochondrial genomes have become known, all of which
encode one or the other component of the mitochondrial
electron transport chain [6••,53•] (a noteworthy finding that
deserves explanation in its own right [54,55•,56•]). 

Yet at the same time as molecular sequence data from mito-
chondrial and α-proteobacterial genomes were
accumulating, a great deal of progress was being made in the
biochemical and cytological study of anaerobic mitochondria
and hydrogenosomes [18,24,26••,57]. However, various for-
mulations and reformulations of the endosymbiont
hypothesis did not incorporate findings from these anaero-
bic organelles in a manner in which they could be explained.
Accordingly, hydrogenosomes remained largely outside the
scope of mainstream endosymbiotic theory until their evo-
lutionary affinity with mitochondria became virtually
undeniable [23,24,25••,26••,27•]. Even then, in a theory that
was designed to explain the origin of an oxygen-respiring
organelle, there was no room for anaerobic biochemistry. 
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Novel and intriguing symbiotic models are emerging to
account for the differences between prokaryotes and
eukaryotes at the level of cellular organization and genome
complexity [58•,59,60•,61]. These have distinctive virtues
but do not directly account for the diversity and compart-
mentation of ATP-producing pathways observed among
contemporary anaerobic protists. 

Today, there still are basically two ways to explain the ori-
gin of anaerobic biochemistry in hydrogenosomes. Under
one alternative, the ancestral mitochondrion is viewed as
an oxygen-respiring organelle in adherence to traditional
formulations of the endosymbiont hypothesis, and the
genes for the enzymes specific to ATP synthesis in anaer-
obic mitochondria and hydrogenosomes are viewed as
acquisitions involving independent lateral gene transfer
events in different eukaryotic lineages [1••]. Under a dif-
ferent alternative, the common ancestor of mitochondria
and hydrogenosomes is viewed as a facultatively anaero-
bic α-proteobacterium that was able to satisfy its ATP
needs with and without the help of oxygen, whereby the
imprint of this facultatively anaerobic past is preserved in
the spectrum of organelle diversity that is observed
among protists today [2••]. 

Although based upon data from the study of only a handful
of anaerobic protists [18,26••], the hydrogen hypothesis
[2••] generates a number of testable predictions concerning
those anaerobic protists that have not yet been studied in
molecular or biochemical detail — particularly amitochon-
driate ones. It predicts all mitochondrion-lacking,
nucleated cells to be secondarily amitochondriate, that is to
have possessed a mitochondrial/hydrogenosomal symbiont
in their evolutionary past but to have subsequently lost the
organelle through reduction. This provides a reasonably
simple criterion by which it can be falsified in gene and
genome comparisons. It also predicts that eukaryotic
nuclear genes for proteins involved in energy metabolism
in hydrogenosomes should share a single eubacterial origin.
A recent phylogeny of the four available eukaryotic PFO
sequences indicates that these genes do seem to stem from
a single eubacterial source, although they cannot currently
be traced to an α-proteobacterial donor [62•]. 

Notably, PFO in the cytosol of Entamoeba histolytica shares
a common ancestry with its homologue from hydrogeno-
somes [62•]. This is consistent with the recent discovery in
Entamoeba of a surprising relictual mitochondrion, termed
the mitosome [63••] (or crypton [64••]), an organelle that
has apparently lost its function in energy metabolism, sug-
gesting that it represents an intermediate stage in the
organelle reduction process [63••]. 

Conclusions
Twenty years ago, biologists were debating whether respi-
ration in mitochondria is an inheritance from purple
non-sulfur bacteria [49]. That debate is over, thanks in no
small part to the sequencing of the genome of Rickettsia

prowazekii [1••,3••]. But the time has come to address the
origin of biochemistry of hydrogenosomes and anaerobic
mitochondria in endosymbiotic models. 

Five years ago, biologists began debating whether contem-
porary oxygen-shunning eukaryotes that lack mitochondria
have secondarily lost the organelle, since nuclear genes of
mitochondrial origin were found in amitochondriate pro-
tists [65]. Such findings have since been extended to many
amitochondriate groups and have rightly prompted critical
reinspection of our views on how eukaryotes and their
characteristic organelles arose [2••,24,26••,52•,66••]. 

Today, we know that mitochondria descend from α-pro-
teobacteria because comparative genome data permit no
other interpretation [3••,6••,66••]. Yet there is still a ten-
dency to presume that the host was an anaerobic,
heterotrophic, phagocytotic cell, often envisaged as an
organism organized similarly to contemporary amitochon-
driate eukaryotes that inhabit anaerobic niches [1••]. This
view has a very long tradition in endosymbiotic thinking
[67], making it all the more important that we critically
reinspect its merits in light of newer findings, because the
endosymbiont hypothesis has fared much better when it
comes to explaining the origins of organelles than it has
when it comes to explaining the origin of their host [68]. 

It may well turn out that the various groups of eukaryotes
that today inhabit anaerobic (and hypoxic) environments
have acquired the genes necessary to colonize these niches
via independent lateral transfers. Or it may turn out that
commonly inherited biochemical relics from the anaerobic
past have been preserved throughout eukaryotic history.
And it is possible that the truth will lie somewhere in
between. However, we can be sure that many of the genes
that have found their way into eukaryotic chromosomes,
by whatever means, will have been used as genetic starting
material to give rise to novel functions [69•]. Clearly, the
study of eukaryotes that do not depend upon oxygen will
provide the incisive clues. 
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