Hydrothermal vents and the origin of life

William Martin*, John Baross[‡], Deborah Kelley[‡] and Michael J. Russell[§]

Abstract | Submarine hydrothermal vents are geochemically reactive habitats that harbour rich microbial communities. There are striking parallels between the chemistry of the H_2 -CO₂ redox couple that is present in hydrothermal systems and the core energy metabolic reactions of some modern prokaryotic autotrophs. The biochemistry of these autotrophs might, in turn, harbour clues about the kinds of reactions that initiated the chemistry of life. Hydrothermal vents thus unite microbiology and geology to breathe new life into research into one of biology's most important questions — what is the origin of life?

The chemistry of life is the chemistry of reduced organic compounds, and therefore all theories for the origin of life must offer testable hypotheses to account for the source of these compounds. The bestknown theories for the origin of organic compounds are based on the notion of an 'organic soup' that was generated either by lightning-driven reactions in the early atmosphere of the Earth or by delivery of organic compounds to the Earth from space (BOX 1). When submarine hydrothermal vents were discovered 30 years ago, hypotheses on the source of life's reduced carbon started to change. Hydrothermal vents revealed a vast and previously unknown domain of chemistry on the Earth. These vents harbour rich ecosystems, the energy source of which stems mainly from mid-oceanridge volcanism^{1,2}. The 360°C sulphide chimneys of the vent systems are primordial environments that are reminiscent of early Earth, with reactive gases, dissolved elements, and thermal and chemical gradients that operate over spatial scales of centimetres to metres. This discovery had an immediate impact on hypotheses about the origin of life, because it was recognized that the vent systems were chemically reactive environments that constituted suitable conditions for sustained prebiotic syntheses3.

In 2000, a completely new type of vent system was discovered that is characterized by carbonate chimneys that rise 60 metres above the ultramafic sea-floor^{4,5}. This vent system was named the Lost City hydrothermal field (LCHF), and might be particularly relevant to our understanding of the origins of life. The ultramafic underpinnings of the Lost City system have a similar chemical composition to lavas that erupted into the primordial oceans on early Earth^{5,6}. Consequently, the LCHF provides insights into past mantle geochemistry

and presents a better understanding of the chemical constraints that existed during the evolutionary transition from geochemical to biochemical processes.

Hydrothermal vents occur at sea-floor spreading zones and have a global distribution (FIG. 1): vent systems have been discovered at almost all sea-floor locations that have been studied in detail7. At spreading zones, magma chambers that contain molten rock (800-1,200°C) discharge lavas onto the ocean floor over time periods that range from <10 years between eruptions to >50,000 years between eruptions⁸. These eruptions produce black smokers and associated diffuse flow systems that host dense and diverse biological communities^{9,10}. By contrast, the mountains of the Lost City-like systems are tens of kilometres off-axis, rarely contain volcanic rocks and are formed by sustained fault activity that has lasted for millions of years^{4,5,11}. Lost City systems are profoundly different from black smokers, so it is important to contrast the two (for an in-depth comparison of Lost City systems and black smokers, see REF. 12).

Black smokers

Examples of black smokers, such as the Faulty Towers complex (FIG. 2a), are located directly above magma chambers that are found 1–3 kilometres beneath the sea-floor¹². Black smoker chimneys emit hot (up to 405°C), chemically modified sea-water¹³. Beneath the fissured sea-floor, downwelling sea-water comes into close contact with the magma chamber during its circulation from the ocean floor, before moving through the crust to re-emerge at the vents. Effluent at black smokers is typically acidic (pH 2–3) and rich in dissolved transition metals¹⁴, such as Fe(II) and Mn(II). Because the black smoker systems are fuelled by volcanoes, black smoker fluids commonly contain high concentrations of

*Institut für Botanik III. Heinrich-Heine Universität Düsseldorf, 40225 Düsseldorf, Germany. *School of Oceanography, Universitu of Washinaton. Seattle, Washington 98195, USA §Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA. Correspondence to W.M. e-mail: w.martin@ uni-duesseldorf.de doi:10.1038/nrmicro1991 Published online 29 September 2008

Box 1 | Prebiotic soup theory

The concept that life arose from a prebiotic soup or primeval broth that covered the Earth is generally attributed to Oparin⁸⁴ and Haldane⁸⁵. The theory received support from Miller's⁸⁶ demonstration that organic molecules could be obtained by the action of simulated lightning on a mixture of the gases CH₄, NH₃ and H₂, which were thought at that time to represent Earth's earliest atmosphere. The organic compounds that were measured included hydrogen cyanide (HCN), aldehydes, amino acids, oil and tar. Additional amino acids were produced by Strecker synthesis through the hydrolysis of the reaction products of HCN, ammonium chloride and aldehydes, and in later experiments polymerization of HCN produced the nucleic acid bases adenine and guanine⁸⁷. However, further condensation and polymerization of these organic precursor molecules requires some mechanism to promote their concentration. Suggestions for this mechanism have included evaporation of tidal pools, adsorption to clays, concentration in ice through eutectic melts and giant oil slicks. Temperature cycling might also have been a factor in peptide production, although cold to freezing conditions are now considered to be more favourable for prebiotic soup⁸⁷.

In their original models, Oparin⁸⁴ and Haldane⁸⁵ assumed that protein was the source of genetic information, which would have been transferred directly from protein to protein as colloidal organic droplets (coacervates) that subsequently multiplied through the assimilation of further organic molecules. Oparin⁸⁴ favoured abiotic synthesis, in which an information-containing protein was the first step to life. By contrast, Haldane⁸⁵ proposed that some form of metabolism was the first step.

This issue of an 'information first' (or RNA world) versus a 'metabolism first' (or autotrophic origins) mechanism is still debated in the origin-of-life community today. Current formulations of the information-first view posit that an evolutionary transition occurred from peptide nucleic acids to tetrose nucleic acids, and eventually to RNA^{\$7,88}, during which tetrose was derived from formaldehyde condensations and bases were derived from HCN condensations. A large repertoire of RNAs then took over as self-replicating entities in a prelude to the advent of DNA and proteins. According to this view, the various stages that are involved in the origin and evolution of life from the prebiotic epoch culminated in exhaustion of the initial prebiotic supply of preformed organic molecules, prompting the evolutionary-origin genetically encoded biosynthetic pathways as compensation. Variants of the prebiotic broth theory propose that the essential building blocks of life were synthesized in space and reached early Earth by comets⁸⁹. Although there has been no debate about the occurrence of organic molecules in comets, this mechanism still produces organic soup, but without the help of lightning.

An alternative proposal to prebiotic broth involves the H_2 -dependent chemistry of transition-metal sulphide catalysts in a hydrothermal-vent setting. Such chemical conversions are similar to those involved in the CO₂-reducing biochemistry of modern microorganisms that use the Wood–Ljungdahl acetyl-coenzyme A (acetyl-CoA) pathway and present a plausible starting point for biochemical evolution. However, this pathway leads not to prebiotic broth, but to acetyl-CoA, an energy-rich thioester that could be the most central carbon backbone in microbial metabolism. The synthesis of acetate and CH₄ from H₂ and CO₂ releases energy, and therefore energy need not be derived from lightning or conditions in space. Hence, the reactions typically take place readily on the Earth, both in modern acetogenesis and methanogenesis, as well as in abiogenic CH₄ or acetate production at contemporary hydrothermal vents. The favourable thermodynamics of CH₄ and acetate formation could, in principle, support synthesis of more complicated biomolecules that could become concentrated at their site of synthesis⁶³.

magmatic CO₂ (4–215 mmol per kg), H₂S (3–110 mmol per kg) and dissolved H₂ (0.1–50 mmol per kg), with varying amounts of CH₄ (0.05–4.5 mmol per kg) that is formed both through biogenic and abiogenic processes¹². A range of temperatures exist, from the hot interior of black smokers to the interface with cold (2°C), oxygenated sea-water (FIG. 2b).

The dissolved gases and metals in black smokers fuel the microbial communities that serve as the base of the food chain in these ecosystems. Some of the archaea in black smokers can replicate at temperatures up to 121°C¹⁵, which is currently thought to be the upper temperature limit of life. There are also examples of ancient, fossilized black smokers, including one found in 90-million-yearold copper deposits in Cyprus that contained fossilized fauna¹⁶ and another found in 3,235-million-year-old sulphide deposits in Western Australia that contained filamentous microfossils¹⁷.

Lost City systems

The off-axis vents are radically different to black smokers. However, our current understanding of these systems is based on research into only one system: the LCHF^{5,18}. Off-axis vents are located several kilometres

away from the spreading zone. Their exhalate has also circulated through the crust, where it can be heated up to ~200°C^{19,20}, but their waters do not come into close contact with the magma chamber. <u>Supplementary information S1</u> (figure) shows a schematic view of the LCHF, which is located near the summit of a 4,000-metre mountain named the Atlantis Massif that sits on 1.5–2-million-year-old crust, at a water depth of ~750 metres^{4,21}.

Fluid circulation within the massif is driven by convection that dissipates heat from the underlying mantle rocks, and perhaps, in part, by exothermic chemical reactions between the circulating fluids and host rocks. These rocks have different compositions compared with those of submarine volcanoes, because they are dominated by the magnesium- and iron-rich mineral olivine and because they have lower silica concentrations. This geochemical setting results in a highly alkaline (pH 9–11) effluent and a combination of extreme conditions that have not previously been observed in the marine environment, including venting of $40-91^{\circ}$ C hydrothermal fluids with high concentrations of dissolved H₂, CH₄ and other low-molecular-mass hydrocarbons, but almost no dissolved CO₂ (REFS 5,20,22). As discussed below,

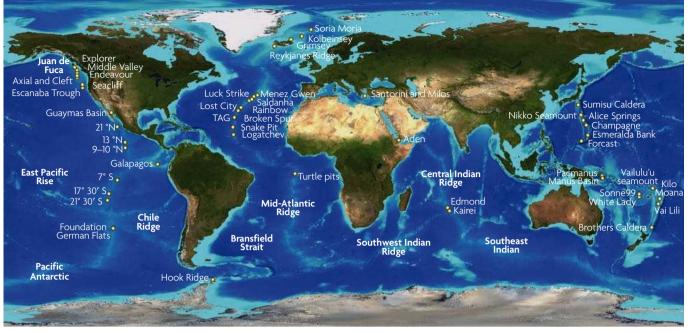


Figure 1 | **Global distribution of known hydrothermal vents.** Temperature and chemical anomalies hint that many more sites exist throughout the world's oceans. Data courtesy of D. Fornari and T. Shank, Woods Hole Oceanographic Institute, Massachusetts, USA.

alkaline pH is an important property of vents that should be considered when contemplating the biochemical origins of life.

Mixing of warm, high-pH fluids with sea-water results in carbonate precipitation and the growth of chimneys that tower up to 60 metres above the surrounding seafloor. ¹⁴C radioisotopic dating indicates that hydrothermal activity has been ongoing for at least 30,000 years¹⁹, whereas recent uranium-thorium dating indicates that venting has been active for ~100,000 years²³. A substantial proportion of the exposed sea-floor that is on, and near to, slow- and ultra-slow spreading ridges consists of ultramafic rocks that are similar to those that host the LCHF²⁴⁻²⁶. These rocks are sites of an important set of geochemical reactions named serpentinization (BOX 2), and have been producing geological H₂ for as long as there has been water on the Earth.

What grows at Lost City, and how?

Metagenomics and environmental sequencing of ribosomal RNA have shown that microbial communities in actively venting carbonate chimneys in the LCHF (FIG. 2c–e) are dominated by a novel phylotype of anaerobic methanogens from the Methanosarcinales order^{5,27,28}. These methanogens can use several organic compounds, some of which have been implicated in anaerobic methane oxidation (AMO) in both hydrothermal sediments^{29,30} and methane seeps^{31,32}. In chimneys that have little or no active venting, the Lost City Methanosarcinales (LCMS) group is replaced by a single phylotype of the anaerobic methanotrophic clade ANME-1. A diverse bacterial assemblage populates the chimney exteriors, where sulphur-oxidizing and methane-oxidizing bacteria use the interface of oxygenated sea-water with H₂- and CH₄-rich hydrothermal fluid. Sulphate-reducing Firmicutes have also been identified; these organisms might serve as a link between the high-temperature, anaerobic chimney interiors and the sea-water-bathed chimney exteriors. Some of the relevant core metabolic reactions that underlie microbial growth at the LCHF are summarized in TABLE 1. The vent effluent is devoid of oxygen and harbours only anaerobes, although aerobes occur where there is contact with ocean water.

Where the LCHF carbonate chimneys are bathed in >80°C hydrothermal fluid, the LCMS group forms dense biofilms that are tens of micrometres thick and comprise ~100% of the archaeal community28. Recently, methyl-coenzyme M reductase (mcrA) gene sequences that correspond to both LCMS and ANME-1 have also been recovered from LCHF carbonate chimneys²⁸. ANME-1 has been identified in numerous environments, including CH₄ seeps in anoxic marine sediments, CH, hydrates, carbonate reefs in the Black Sea and mud volcanoes³¹⁻³⁵. Genomic evidence indicates that anaerobic, methane-oxidizing archaea harbour nearly all of the genes necessary for methanogenesis, including mcrA^{36,37}, but it has been unclear whether LCMS and ANME-1 are sources or sinks of CH₄ within the Lost City system.

In all marine environments in which AMO is known to occur, anaerobic, methanotrophic archaebacteria cooccur with sulphate-reducing eubacteria, commonly in tightly coupled consortia³², although cells are not always in direct physical contact with each other²⁹. However, a recent report has also linked AMO with denitrification in a freshwater canal³⁸. Incubation experiments show that the marine consortia represent a syntrophic metabolic relationship between CH₄-oxidizing archaea

Consortia

Two or more different microorganisms that associate during growth to form characteristically ordered structures.

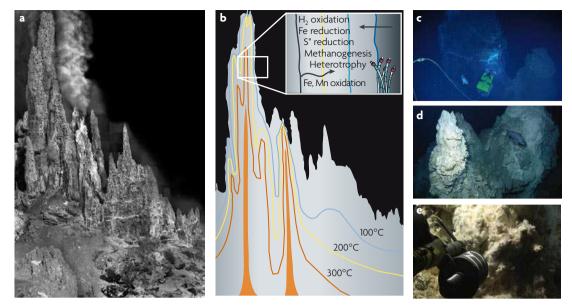


Figure 2 | Hydrothermal vents. There are two main types of hydrothermal vent: the black smoker type (a,b) and the Lost City type (c-e). a | A black smoker in the Faulty Towers complex in the Mothra hydrothermal field on the Endeavour Segment of the Juan de Fuca Ridge. The tallest chimney rises 22 metres above the sea-floor. The 'furry' appearance of the chimneys reflects the fact that the chimney walls are encrusted in dense communities of tube worms, scale worms, palm worms, sulphide worms and limpets. The two-pronged chimney in the middle with an active plume is a 300°C chimney called Finn, from which a 121°C organism was cultured that uses Fe(III) as an electron acceptor in the presence of N, and CO, (REF. 15). b | The outer surface of black smoker chimneys is bathed in a mixture of 2°C, oxygenated sea-water and warm vent fluid that escapes from within the structure. The inner walls that form the boundary of the central up-flow conduits commonly exceed 300°C, and temperatures are fixed by a steady supply of rapidly rising, strongly reducing vent fluid. Intermediate conditions exist as gradients between these extremes. Changes in microbial abundance, diversity and community structure have been associated with inferred environmental gradients in the chimney walls^{99,100}. c | Microbial sampling at the Lost City hydrothermal field. The robotic vehicle Hercules is shown hovering near the summit of the 60-metres-tall Poseidon complex. White areas are active or recently active sites of venting. d | The top left part of the Nature Tower. Wreck-fish, which are ~1 metre in length and are commonly found at a water depth of 750 metres, routinely investigated the vehicles. The Poseidon complex has four pinnacles, two of which are shown here. Actively venting edifices are composed of aragonite (CaCO₂) and brucite (Mg(OH)₂). The grey-brown material also contains carbonate, but is richer in calcite that has recrystallized from aragonite. e | A close up of a 75°C, diffusely venting carbonate chimney showing a titanium water sampler. Dense colonies of filamentous bacteria thrive in the high pH, CH₄- and H,-rich fluids. The insides of the chimneys are dominated by a single phylotype of archaea from the Methanosarcinales order that grow at 80°C. A phylotype of anaerobic methanotrophic archaea are restricted to lower-temperature chimneys. Bacterial 16S ribosomal RNA gene sequences correspond to a diverse community that includes species of Methylobacter (or Methylomonas), species of Thiomicrospira, members of the Firmicutes phylum and Desulfotomaculum alkaliphilus²⁸. Parts **a,b** courtesy of D. Kelley and J. Deloney, University of Washington, USA. Images c-e courtesy of D. Kelley, Institute for Exploration, University of Rhode Island, USA, and the National Ocean and Atmospheric Administration Office of Ocean Exploration.

Stable isotope study

The use or analysis of stable isotopes, such as ²H, ¹³C or ¹⁵N, that do not undergo radioactive decay. Isotope discrimination properties of an enzymatically catalysed process can produce characteristic isotope ratios, for example¹³C or ¹²C, that differ from those generated by various non-enzymatic processes. This provides insights into the partitioning of elements during microbial metabolism, and in geochemistry, can provide insights into the biological and geological source of substances such as CH4

and sulphate-reducing bacteria³⁹⁻⁴². AMO is not energetically feasible unless sulphate-reducing bacteria or some other metabolic group of bacteria or archaea are present to use H_2 that is generated from the anaerobic oxidation of CH_4 .

Almost all marine sites where AMO has been shown to occur are cold, sediment-hosted environments that are supported by CH_4 hydrates, CH_4 seeps or mud volcanoes. The only two exceptions are the Guaymas Basin, where warm sediments overlie a hydrothermal system and AMO can occur at temperatures as high as $85^{\circ}C^{30,43,44}$, and the LCHF, where biofilms that are composed of organisms related to the ANME-3 group are in direct contact with serpentinization-derived CH_4 at temperatures in excess of $90^{\circ}C^{5,28}$. The results from earlier phylogenetic and natural stable isotope studies^{5,27,28,45}

were unable to determine whether actively venting carbonate chimneys at Lost City are sites of methanogenesis or AMO. Newer data, however, indicate that CH, and associated short hydrocarbons in the effluent of LCHF are not formed by biological activity, but instead are of geochemical origin²². This, in turn, suggests that LCMS and ANME-1 are probably oxidizing CH₄ at LCHF, and that they are doing so in the presence of abundant environmental H₂. This interpretation would be consistent with the recent intriguing results of Moran et al.46, who showed that high partial pressures of H₂ did not significantly inhibit AMO in active sediments, but that methyl sulphide was inhibitory, which indicated an important role for methyl sulphide and only a peripheral role, if any, for H, in AMO in this sediment system.

(2)

Box 2 | Serpentinization: the source of H₂ and CH₄ at Lost City

Hydrothermal vents, and Lost City in particular, have sparked interest in a geochemical process known as serpentinization⁹⁰. At off-axis vents, sea-water invades the warm (100°C) to hot (400°C) oceanic crust through cracks and crevasses where the chemical reactions of serpentinization take place. The relevant sea-water constituents for the serpentinization reaction are H_2O and CO_2 (dissolved as HCO_3^{-1}). The relevant crustal constituents are Fe^{2+} -containing rocks⁹¹. At Lost City, this rock consists mainly of the mineral olivine ($-Mg_{1.6}Fe_{0.4}SiO_4$). Seismic data indicate that the fluids beneath Lost City percolate to depths of 500 metres (or deeper) beneath the sea-floor at moderately high temperatures (150–200°C) The crust beneath Lost City is 1–2 million years old based on magnetic anomaly information, and it is likely that the rocks which are ~500 metres to 1 kilometre beneath the sea-floor reach temperatures of ~300°C. Under these conditions, Fe^{2+} in the rocks reduces H_3O to produce Fe^{3+} , H_2 and hydrocarbons according roughly to Equation 1.

$$(Mg,Fe)_{,S}iO_{4} + H_{,O} + C \rightarrow Mg_{,S}iO_{,C}(OH)_{4} + Mg(OH)_{2} + Fe_{3}O_{4} + H_{,2} + CH_{4} + C_{,2} - C_{5}$$
(1)

Unaltered and hydrothermally altered mantle rocks contain various carbon compounds, including graphite, CH_4 and CO_2 . Work by Proskurowski *et al.*²² indicates that beneath Lost City, hydrocarbons can be generated according to Equation 2.

$$CO_{2n0} + [2 + (m/2n)]H_2 \rightarrow (1/n)C_nH_m + 2H_2O$$

The resulting minerals are magnetite $(Fe_{3}O_{4})$, which contains Fe^{3+} as a product of Fe^{2+} oxidation, brucite $(Mg(OH)_{2})$ and a hydroxylated magnesium–iron silicate called serpentine $(Mg_{2.85}Fe_{0.15}Si_{2.05}(OH)_{4})$, after which the process is named.

Serpentinization has probably been ongoing since there were oceans on the Earth⁹². One cubic metre of olivine can deliver approximately 500 moles of H₂ during serpentinization⁹³. Most of the Earth's oceanic crust consists of olivine (or pyroxene, which can also participate in serpentinization reactions), and the total volume of the Earth's ocean is estimated to circulate through hydrothermal vents every ~100,000 years⁹³. Thus, the vast amounts of Fe²⁺, the Earth's electron reservoir for H₂ production via serpentinization, in the mantle is nowhere near exhaustion⁹². Serpentinization delivers, and has always delivered, a substantial amount of H₂ as a source of electrons for primary production in submarine ecosystems. At the Lost City hydrothermal field (LCHF), serpentinization produces H₂ that can reduce CO₂ to CH₄ geochemically²². The same geochemical process might have given rise to the energy-releasing chemical reactions at the core of carbon and energy metabolism in methanogens and acetogens, reactions that were eventually augmented by cofactors and enzymes⁶³.

Serpentinization occurs both beneath the hot and acidic (pH 2–3) black smokers and within the cooler and alkaline (pH 9–11) off-axis vent systems, such as Lost City¹². Therefore, although both types of vent would have offered a pH gradient that was similar to the Hadean ocean (see the main text), the lower temperatures found at off-ridge vents would provide more favourable conditions for sustained abiotic synthesis and accumulation of reduced carbon compounds⁵⁸. The chimneys at the LCHF are mainly composed of carbonates, rather than of iron monosulphide (FeS) minerals, which because of their catalytic properties play a central part in our thinking about biochemical origins⁶³⁻⁶⁵. However, the Hadean ocean was replete with Fe(II), and therefore FeS chimneys would have been abundant at that time. Thus, although the chemistry of the serpentinization process in the Hadean was perhaps not much different than that observed today, the specific geochemical conditions at the vent–ocean interface in the Hadean would have differed markedly from those observed in today's oxic oceans⁶⁴.

Clues from Lost City effluent CH₄

The millimolar concentrations of abiogenic CH_4 present in the Lost City effluent do not seem to originate from marine CO_2 in down-draft waters, but instead seem to originate from CO_2 that has leached from an inorganic carbon source in the mantle²². Provided that H_2 from serpentinization is the reductant for CH_4 synthesis at LCHF, the overall reaction that produces CH_4 in the subsea-floor hydrothermal system is the same as that used by methanogens to fuel carbon and energy metabolism (TABLE 1). This thought-provoking finding raises an important question: is the geochemical synthesis of CH_4 at Lost City a model for the simple types of core chemical reactions from which biological CH_4 production arose?

Keeping in mind that the answer might be no, the idea is worth pursuing. It should be noted that proponents of the idea that life started from prebiotic soup (BOX 1) would certainly disagree with this view⁴⁷, but we will not argue their case here. Hypotheses about the origin-of-life chemistry have long been couched in terms of chemical equilibria⁴⁸. However, life is far from an equilibrium process. In all living systems, there is a

main chemical reaction at the core of energy metabolism — the chemical reaction that cells use to synthesize their ATP — and a few examples of core chemical reactions that generate ATP in the bacteria and archaea that inhabit the Lost City are listed in TABLE 1.

Hydrothermal vents have breathed fresh life into a century-old concept regarding the origin of life. This concept is known today as autotrophic origins and posits that life started from CO₂, that the first organisms were autotrophs and that these autotrophs obtained their reduced carbon from CO₂ and other simple C₁ compounds, using H₂ as the main electron donor³. Central to some versions of the autotrophic origins hypothesis is the view that the acetyl-coenzyme A (acetyl-CoA) pathway of CO₂ fixation is the most ancient among modern CO₂-fixing pathways^{49,50} and that the biochemistry of this pathway might parallel a simpler abiotic chemistry at the origin of metabolism. The acetyl-CoA pathway that is found in modern acetogens and methanogens is particularly relevant to this hypothesis. This is because, in contrast to the other four pathways of CO₂-fixation that are known^{51,52}, the acetyl-CoA pathway not only

Metabolism	Reaction	∆G⁰′ (kJ per mole)*	Examples in vent environments
Anaerobic			
Methanogenesis	$4 H_2 + CO_2 \rightarrow CH_4 + 2 H_2O$ $CH_3CO_2^- + H_2O \rightarrow CH_4 + H CO_3^-$ $4 HCOO^- + H^+ \rightarrow 3 HCO_3^- + CH_4$	-131 -36 -106	<i>Methanococcus</i> spp. common in magma-hosted vents; Methanosarcinales at Lost City
S° reduction	$S^{\circ} + H_2 \rightarrow H_2 S$	-45	Lithotrophic and heterotrophic; hyperthermophilic archaea
Anaerobic CH₄ oxidation	$CH_4 + SO_4^{2-} \rightarrow HS^- + HCO_3^- + H_2O$	-21	Methanosarcina spp. and epsilonproteobacteria at mud volcanoes and methane seeps
Sulfate reduction	SO_4^{2-} + H ⁺ + 4 H ₂ \rightarrow HS ⁻ + 4 H ₂ 0	-170	Deltaproteobacteria
Fe reduction	$8 \text{ Fe}^{3+} + \text{CH}_3\text{CO}_2^- + 4 \text{ H}_2\text{O} \rightarrow 2 \text{ HCO}_3^- + 8 \text{ Fe}^{2+} + 9 \text{ H}^+$	Not calculated‡	Epsilonproteobacteria, thermophilic bacteria and hyperthermophilic Crenarchaeota
Fermentation	$C_6H_{12}O_6 \rightarrow 2C_2H_6O + 2CO_2$	-300	Many genera of bacteria and archaea
Aerobic			
Sulfide oxidation [§]	HS^- + 2 $O_2 \rightarrow SO_4^{2-}$ + H^+	-750	Many genera of bacteria; common vent animal symbionts
CH_4 oxidation	$CH_4 + 2O_2 \rightarrow HCO_3^- + H^+ + H_2O_3^-$	-750	Common in hydrothermal systems; vent animal symbionts
$H_2^{}$ oxidation	$H_2 + 0.5 O_2 \rightarrow H_2O$	-230	Common in hydrothermal systems; vent animal symbionts
Fe oxidation	$Fe^{2+} + 0.5 O_2 + H^+ \rightarrow Fe^{3+} + 0.5 H_2 0$	-65	Common in low-temperature vent fluids; rock-hosted microbial mats
Mn oxidation	Mn^{2+} + 0.5 O_2 + $H_2O \rightarrow MnO_2$ + 2 H^+	-50	Common in low-temperature vent fluids; rock-hosted microbial mats; hydrothermal plumes
Respiration	$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$	-2,870	Many genera of bacteria

Table 1 | Anaerobic and aerobic microbial metabolic reactions and potential energy yields in hydrothermal vent environments

*From REFS 73,103 and WJ. Brazelton (personal communication). *Some hyperthermophiles from the Archaea and Bacteria domains can couple the reduction of Fe with the oxidation of H, (REFS 104,105). *Some epsilonproteobacteria from subsea-floor hydrothermal vents, including newly erupted vents, can oxidize H,S to S° (REF. 106).

Chemiosmotic coupling

The coupling of endergonic and exergonic reactions through a proton motive force. Chemiosmotic coupling results in the conservation of chemical energy. In its most familiar form, chemiosmotic coupling entails the pumping of protons from the inside of the cell to the outside of the cell as electrons are passed from a donor to an acceptor through an electron transport chain in the prokaryotic plasma membrane. This generates a pH and electrical-potential gradient across the plasma membrane known as the proton motive force. The proton motif force represents electrochemical energy that can be harnessed in various ways, but the best-known of these involves ATPases, also called coupling factors, which synthesize ATP from ADP and inorganic phosphate as protons pass through them to re-enter the cytoplasm.

provides a source of carbon, but is also the source of ATP. During the reduction of CO_2 with electrons from H_2 , acetogens and methanogens use the acetyl-CoA pathway to generate an ion gradient that can be harnessed by chemiosmotic coupling⁵³⁻⁵⁵. Using CO for either methanogenesis or acetogenesis instead of H_2 and CO_2 provides more energy⁵⁶, and thus might be of interest in the context of the origins of life.

Such considerations bring C₁ metabolism into focus and have drawn attention to the thermodynamic equilibria of carbon species that result from the H₂-CO₂ couple at hydrothermal vents (FIG. 3). In the hot (>350°C) conditions of black smokers, carbon that is in equilibrium with water, even in the presence of significant levels of H₂, usually occurs as CO₂. As temperatures decrease to 150°C or lower, as at the LCHF, reduced-carbon species are favoured57,58. McCollom and Seewald59,60 investigated the equilibria that are present between H₂, CO₂ and reduced C, species in conditions that mimicked serpentinizationdriven reactions in off-axis vents. They found that, perhaps surprisingly, there are no substantial kinetic barriers in the reduction of CO₂ to formate (and CO), formaldehyde and methanol (the reactions proceed quickly), but that kinetic barriers in the reduction to CH₄ were appreciable⁶⁰. In particular, the reaction $HCO_3^- + H_2 \rightarrow HCOO^- + H_2O$ was found to be "rapid on geologic timescales at temperatures as low as 100°C." (REF. 59)

If these experimental conditions approximate Lost City conditions in the subsurface, which seems likely, CH₄-rich Lost City effluents should contain reduced carbon species in addition to CH₄. Indeed, the Lost City fluids contain dissolved organic carbon at 95 µM, which is more than twice the concentration of local background (non-vent) water, and both formate and acetate are present in significantly higher concentrations than in deep sea-water^{61,62}. The presence of acetate and formate (in addition to CH.) fits well with the hypothesis that the types of chemical reactions which are catalysed by minerals in the mantle at Lost City are inorganic analogues, and even the possible evolutionary precursors, of the energy-releasing reactions that predated microbial metabolism63. If life started from CO₂, and life began in hydrothermal vents, then a better understanding of the reduction of CO₂ to CH₄, formate and acetate during serpentinization, and a better understanding of the catalysts and the chemical intermediates in that process, might allow new insights into the initial reactions that provided reduced carbon for life. Simple chemical compounds that could focus some of our current thinking on primordial biochemistry in the context of hydrothermal origins include transition metals and transition metal sulphides^{64,65}, methyl sulphide^{63,66}, thioesters⁶⁷, CO68, acetyl phosphate69 and carbonyl sulphide70, as well as carbamyl phosphate, carboxy phosphate and formyl phosphate63. Theoretically, it would seem that CO and

Box 3 | The RNA-world concept

The discovery that RNA has catalytic activities⁴⁴, similar to proteins, but also carries heritable information, similar to DNA, had an immense impact on our thinking about early evolution. The 'RNA world' (REF. 95) was envisaged as an inventive phase of biogenesis in which RNA alone performed the vital functions of life (catalysis, heredity, recombination and evolution), together with RNA-like cofactors, such as NAD⁺ or FAD⁹⁶. This concept is so conceptually satisfying that questions which surround the origins of DNA and protein from RNA are sometimes couched in terms of how rather than if⁸³. But the RNA world does not solve conceptual problems that relate to life's origin for free; rather, it exacts an exorbitant price. As one of the most esteemed proponents of the RNA world hypothesis, the late Leslie E. Orgel⁸⁸, once pointed out: "[w]hile acceptance of an RNA World greatly simplifies the problem of the origin of life, it also has a negative aspect. If the origin of the RNA World preceded the origin of protein synthesis, little can be learned about the chemistry of the origin of life from the study of protein enzyme mechanisms. The justification of prebiotic syntheses by appealing to their similarity to enzymatic mechanisms has been routine in the literature of prebiotic chemistry. Acceptance of the RNA World hypothesis invalidates this type of argument. If the RNA World originated *de novo* on the primitive Earth, it erects an almost opaque barrier between biochemistry and prebiotic chemistry."

This quote symbolically marks the dividing line in the 'metabolism first' versus 'information first' debate (BOX 1). Did enzymes invent all biochemical reactions or did chemistry (similar to some biochemical reactions) naturally exist before the assistance of enzymes? Enzymes do not perform feats of magic, but merely allow chemical reactions that have a tendency to occur anyway to occur more rapidly. The enzymes that generate CH₄ from H₂ and CO₂, for example, are complex and highly ordered in modern methanogens, but the overall reaction that they catalyse takes place in hydrothermal vents either with (microbially) or without (geochemically) the help of proteinaceous catalysts. Indeed, the first step of biological methanogenesis, the formation of a carbamate, is spontaneous and requires no protein at all⁹⁷. Of course, it remains within the realm of possibilities that modern microbial metabolism holds no relics of the chemistry that preceded the origin of genetic material⁸⁸. An alternative, however, is that the evolutionary growth of organically catalysed reactions was derived from a central trail blazed by exergonic, spontaneous and/or inorganically catalysed reactions, and that this trail was, in turn, constrained by that which is thermodynamically favourable⁹⁶. Prerequisite to this view is a sustained source of chemical energy, which hydrothermal vents provide. In this sense, the similarity between chemical conversions presented by the acetyl-coenzyme A pathway⁶³ and carbon reduction at hydrothermal vents²² (FIG. 3) are deserving of closer inspection, as both release energy, some of which is harnessed by the acetyl-coenzyme A pathway to allow additional chemical work.

chemically accessible methyl groups, such as CH₃SH, would be able to support sustainable acetyl thioester and acetyl phosphate synthesis in a hydrothermal vent setting. Acetate would be the initial end product of such primordial biochemistry, which would involve substratelevel phosphorylation. It has been suggested that a simple carbon and energy metabolism of this type at an alkaline hydrothermal vent might have been capable of supporting the origin of microbial life even up to translation, genes and proteins⁶³. The origin of chemiosmotic coupling, the main means of ATP synthesis among microorganisms, is more complicated. However, as discussed below, alkaline vents offer a possible solution even for this mechanism, because they provide a geochemically generated electrochemical gradient of protons at the vent–ocean interface.

Alkaline pH and gradients are important

An exciting property of Lost City effluent is its alkalinity (pH 9–11), which produces a pH gradient at the vent– ocean interface. It is feasible that the naturally chemiosmotic nature of alkaline hydrothermal vents in the Hadean eon, when chimney interiors had a pH of 9–10 and the outer walls of chimneys were bathed in ocean fluids with a pH of 5–6, were essential for the origin of free-living cells^{63,64,71}. The nature and chemistry of chemiosmotic harnessing⁷² (through an ATPase) is more conserved than the myriad of mechanisms or proteins that generate proton gradients in bacteria and archaea^{73,74}. Accordingly, it has been suggested that the ability to harness a continuous and naturally existing proton gradient at an alkaline hydrothermal vent is older than the ability to generate a proton gradient with a chemistry that is specified by genes⁶³.

This idea might seem counter-intuitive, but what are the alternatives? At the most basic level, there are protein-cofactor complexes that generate chemiosmotic potential (for example, the myriad proteins and membrane-soluble carriers that comprise electrontransport chains among prokaryotes^{75,76}) and protein complexes that harness chemiosmotic potential to conserve chemical energy as ATP (ATPases)77,78. Regarding the question of which came first, there are two simple possibilities: either energy-consuming pumping or energy-conserving chemiosmotic harnessing came first. It is possible that early chemical systems could have expended energy to generate ion gradients and only later developed mechanisms to harness them. However, this hypothetical scenario would require energy to burn, something that early chemical systems might not have had in abundant supply.

Alternatively, it is also possible that the ion gradients were always present, being produced by alkaline hydrothermal effluents that interfaced with almost pH-neutral ocean water. In turn, this naturally existing energy source could have been tapped into by proteins that later evolved a more complicated and diversified chemistry in which ion gradients were generated across the plasma membrane⁶³. This would have provided early chemical systems with energy to burn, which would have boosted biochemical evolution in a dramatic manner, as a large amount of chemical-free energy would have been made available in the form of phosphoanhydride bonds. These bonds provide phosphorylating potential that allow reactions which are thermodynamically unfavourable (but perhaps are favourable for

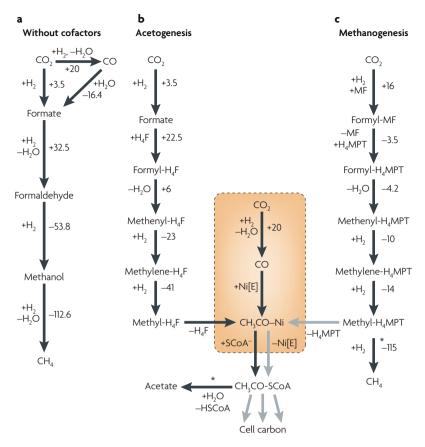


Figure 3 | Chemical and biochemical reactions. A schematic of the H₂-dependent conversions of CO₂ to CH₄ without cofactors (a) and with cofactors (b,c) in acetogens (to acetate) and methanogens growing on H₂ and CO₂. The numbers next to the arrows indicate the approximate change in free energy (ΔG^{0}) at 25°C and pH 7 ($\Delta G^{0'}$) in kJ per mole. The thermodynamic values are taken from REFS 55,56. For details of the biologically catalysed reactions, see the review by Maden⁵⁵. For details of the reactions without cofactors under hydrothermal conditions, in which the thermodynamic values provided do not directly apply, see REF. 101. The dotted oval represents bifunctional CO dehydrogenase/ acetyl-coenzyme A (acetyl CoA) synthase (CODH/ACS), a conserved enzyme that is common to the acetyl-CoA pathway of CO, reduction in both acetogens and methanogens. The enzymes that are involved in methyl synthesis in acetogens and methanogens are not evolutionary related, even though similar chemical steps are involved^{55,63}. This has been interpreted to mean that the overall exergonic chemical conversions are more ancient than the enzymes that catalyse them in modern cells. Although all reactions shown are reversible, arrows are shown in only one direction for simplicity. The asterisks at the methyl-H₄MPT to CH₄ conversion and the acetyl-CoA to acetate conversion⁵⁴ indicate that several enzymes and cofactors that are not shown here are involved⁵⁵. In both acetogens⁵⁴ and methanogens⁵³, net energy conservation (ATP gain) involves the generation of ion gradients using the overall reaction shown. This chemiosmotic potential is then harnessed by an ATPase. The coupling site in methanogenesis (not shown) entails the conversion of methyl-H₄MPT to CH_4 (REF. 53); the coupling site in acetogenesis (not shown) has recently been suggested to involve a ferredoxin-NAD oxidoreductase¹⁰². The formate to formyl-H₄F conversion in acetogens involves ATP hydrolysis (not shown), which lowers $\Delta \dot{G}^{0\prime}$ for the reaction to -10 kJ per mole⁵⁵; the chemiosmotic potential is required for the synthesis of formyl-MF in methanogens⁵³. For both acetogens and methanogens, black arrows indicate reactions that are involved in core ATP synthesis, whereas grey arrows indicate that a portion of the total carbon flux is used to satisfy the carbon needs of the cell. H₄F, tetrahydrofolate; H₄MPT, tetrahydromethanopterin; HSCoA, coenzyme A; MF, methanofuran; Ni[E], an Fe-Ni-S cluster in CODH/ACS. Part a adapted, with permission, from REF. 101 © (2006) National Academy of Sciences. Parts b,c adapted, with permission, from REF. 55 © (2000) Portland Press.

self-replication or geochemically independent reactions) to proceed more readily. For example, the conversion of formate to the formylated pterin cofactor (formyl-H,F) shown in FIG. 3b is thermodynamically unfavourable ($\Delta G^{0'}$ equals 22 kJ per mole) without ATP hydrolysis, but is favourable ($\Delta G^{0'}$ equals -10 kJ per mole) when accompanied by ATP hydrolysis55, whereby acetogens gain their net ATP from chemiosmotic coupling⁵⁴. Curiously, the synthesis of formyl-H F in methanogenesis from formyl-H_MPT (FIG. 3c) also requires energy input⁵⁵, but this energy does not come from ATP. Instead the enzyme that directly catalyses the reaction consumes the part of the chemiosmotic gradient that is generated by the later reactions of methane synthesis⁷⁹. Both modern acetogenesis and methanogenesis require chemiosmotic gradients to operate, which points to the antiquity of chemiosmotic coupling mechanisms and suggests that before mechanisms evolved to harness naturally existing chemiosmotic potential at alkaline vents, geochemically provided reduced-C₁ compounds were essential to the initiation of both acetogenesis and methanogenesis63. Such C1 compounds could have been methyl groups that were generated through serpentinization, which would agree with recent findings from Lost City²².

The temperature gradients and porous structure of both modern⁵ and ancient⁷¹ hydrothermal vents could also enable the concentration⁸⁰ and perhaps even replication⁸¹ of the products of organic synthesis to form primitive genetic material⁸². The view that life arose at a hydrothermal vent is compatible with concepts germane to the RNA world⁸³ (BOX 3), in that microcompartments at vents would provide a physical and chemical environment that is conducive to chemical synthesis, concentration and polymerization.

Conclusion

The discovery of hydrothermal vent systems profoundly changed how we view the geological, geochemical and ecological history of the Earth. Under-sea vents are abundant on the floor of the world's oceans and are important sources of many elements and organic compounds that are transferred into the hydrosphere. They can support life without input from photosynthesis and they harbour fascinating life with symbiotic relationships that involve lithoautotrophic microorganisms that use chemical energy to support metazoans. Moreover, a real or virtual sojourn to active deep-sea hydrothermal vent environments is also a visit to primordial Earth — active hydrothermal systems existed as soon as liquid water accumulated on the Earth more than 4.2 billion years ago. It is possible that present-day hydrothermal vent microorganisms harbour relict physiological characteristics that resemble the earliest microbial ecosystems on the Earth. It is also possible that geochemical processes of carbon reduction in hydrothermal systems represent the same kind of energy-releasing chemistry that gave rise to the first biochemical pathways. Life need not have evolved this way, but the mere prospect that it could have is reason enough to probe these environments further.

- Corliss, J. B. et al. Submarine thermal springs on the 1. Galapagos rift. Science 203, 1073-1083 (1979).
- 2 Spiess, F. N. et al. East Pacific rise: hot springs and geophysical experiments. Science 207, 1421-1433 (1980).
- 3. Baross, J. A. & Hoffman, S. E. Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Orig. Life Evol. Biosph. **15**, 327–345 (1985). Kelley, D. S. et al. An off-axis hydrothermal vent field
- 4 near the Mid-Atlantic Ridge at 30°N. Nature 412, 145-149 (2001). Reports the discovery of the LCHF and important differences of LCHF geochemistry compared with black smokers.
- 5 Kelley, D. S. et al. A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science 307, 1428-1434 (2005).
- 6 de Wit, M. J. Early Archean processes: evidence from the South African Kaapvaal craton and its greenstone belts. *Geologie en Mijinbouw* **76**, 369–371 (1998).
- Baker, E. T. & German, C. R. in Mid-Ocean Ridges: 7 Hydrothermal Interactions between the Lithosphere and Oceans (eds German, C., Lin, J. & Parson, L. M.) 245-266 (American Geophysical Union, Washington DC 2004)
- Hammond, S. R. Offset caldera and crater collapse on 8 Juan de Fuca ridge-flank volcanoes. Bull. Volcanol. 58, 617-627 (1997)
- 9 Delaney, J. R. et al. The quantum event of oceanic crustal accretion: impacts of diking at mid-ocean ridges. *Science* **281**, 222–230 (1998).
- Embley, R. W. & Lupton, J. E. in The Subseafloor 10 Biosphere at Mid-Ocean Ridges (eds Wilcock, W. S. D., DeLong, E. F., Kelley, D. S., Baross, J. A. & Cary, S. C.) 75-97 (American Geophysical Union, Washington DC, 2004)
- 11 Karson, J. A., Früh-Green, G. L., Kelley, D. S., Williams, E. A., Yoerger, D. R. & Jakuba, M. Detachment shear zone of the Atlantis Massif core complex, Mid-Atlantic ridge, 30°N. Geochem. Geophys. Geosyst. 7, Q06016 (2006).
- 12 Kelley, D. S., Baross, J. A. & Delaney, J. R. Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annu. Rev. Earth Planet Sci. 30, 385–491 (2002).
- 13 Von Damm, K. L. et al. Extraordinary phase separation and segregation in vent fluids from the southern East Pacific Rise. Earth Planet Sci. Lett. 206, 265–378 (2003).
- Von Damm, K. L. in Physical, Chemical, Biological, and Geological Interactions within Seafloor Hydrothermal Systems (eds Humphris, S., Zierenberg, R., Mullineau, L. & Thomson R.) 222-247 (American Geophysical Union, Washington DC, 1995). Kashefi, K. & Lovley, D. R. Extending the upper
- 15 temperature limit for life. Science 301, 934 (2003).
- 16 Little, C. T. S., Cann, J. R., Herrington, R. J. & Morisseau, M. Late Cretaceous hydrothermal vent communities from the Troodos Ophiolite, Cyprus. Geology 27, 1027–1030 (1999).
- 17 Rasmussen, B. Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit. Nature 405, 676-679 (2000).
- Ludwig, K. A., Kelley, D. S., Butterfield, D. A., Nelson, B. K. & Früh-Green, C. Formation and evolution of 18 carbonate chimneys at the Lost City Hydrothermal Field. Geochim. Cosmochim. Acta 70, 3625-3645 (2006).
- 19 Früh-Green, G. L. et al. 30,000 years of hydrothermal activity at the Lost City Vent Field. Science 301, 495-498 (2003)
- Proskurowski, G., Lilley, M. D., Kelley, D. S. & Olson, E. J. Low temperature volatile production at the Lost City Hydrothermal Field, evidence from a hydrogen stable isotope geothermometer. Chem. Geol. 229, 331-343 (2006)
- Blackman, D. K. et al. Geology of the Atlantis massif (Mid-Atlantic Ridge 30°N): implications for the evolution of an ultramafic oceanic core complex. Mar. Geophys. Res. 23, 443–469 (2002). Proskurowski, G. *et al.* Abiogenic hydrocarbon
- 22 production at lost city hydrothermal field. Science 319, 604-607 (2008). Reports isotopic evidence which indicated that CH, and volatile hydrocarbon production at Lost City is a geochemical, not a biological, process. This study therefore implicates serpentinization in abiogenic carbon reduction, which could be highly relevant in an origin-of-life context.
- Ludwig, K. A., Kelley, D. S., Shen, C., Cheng, H. & 23 Edwards, R L. U/Th geochronology of carbonate

chimneys at the Lost City hydrothermal field. Eos Trans. AGU 86, V51B-1487 (2005)

- Bach, W., Banerjee, N. R., Dick, H. J. B. & Baker, E. T. 24 Discovery of ancient and active hydrothermal systems along the ultra-slow spreading Southwest Indian Ridge 10°-16°E. Geochem. Geophys. Geosystems 3, 1044 (2002)
- 25 Dick, H. J. B., Lin, J. & Schouten, H. An ultraslowspreading class of ocean ridge. Nature 426, 405-412 (2003).
- 26 Edmonds, H. N. et al. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel ridge in the Arctic. Nature 421, 252-256 (2003).
- 27 Schrenk, M. O., Kelley, D. S., Bolton, S. & Baross, J. A. Low archaeal diversity linked to sub-seafloor geochemical processes at the Lost City Hydrothermal Field, Mid-Atlantic Ridge. Environ. Microbiol. 6, 1086-1095 (2004).
- Brazelton, W. J., Schrenk, M. O., Kelley, D. S. & Baross, J. A. Methane and sulfur metabolizing microbial communities dominate in the Lost City hydrothermal vent ecosystem. Appl. Environ. Microbiol. 72, 6257-6270 (2006).
- 29 Orphan, V. J., House, C. H., Hinrichs, K. U., McKeegan, K. D. & DeLong, E. F. Direct phylogenetic and isotopic evidence for multiple groups of Archaea involved in the anaerobic oxidation of methane. *Geochim*. Cosmochim. Acta 66, A571 (2002).
- Teske, A. et al. Microbial diversity of hydrothermal 30 sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl Environ, Microbiol, 68, 1994-2007 (2002).
- Aloisi, G. I. *et al.* CH₄-consuming microorganisms and the formation of carbonate crusts at cold seeps. Earth Planet. Sci. Lett. 203, 195-203 (2002).
- 32 Boetius, A. et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–626 (2000).
- 33 Michaelis, W. et al. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297. 1013-1015 (2002).
- Orphan, V. J. *et al.* Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in 34 anoxic marine sediments. Appl. Environ. Microbiol. 67, 1922-1934 (2001).
- 35 Thomsen, T. R., Finster, K. & Ramsing, N. B. Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Appl. Environ. Microbiol. 67, 1646–1656 (2001).
- 36 Hallam, S. J. et al. Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305, 1457-1462 (2004).
- 37 Meyerdierks, A. et al. Insights into the genomes of archaea mediating the anaerobic oxidation of methane. *Environ. Microbiol.* **7**, 1937–1951 (2005)
- Raghoebarsing, A. et al. A microbial consortium 38 couples anaerobic methane oxidation to
- denitrification. *Nature* **440**, 918–921 (2006). Girguis, P. R., Cozen, A. E. & DeLong E. F. Growth and 39 population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuousflow bioreactor. Appl. Environ. Microbiol. 71, 3725-3733 (2005).
- 40 Hoehler, T. M., Alperin, M. J., Albert, D. B. & Martens, C. S. Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Global Biogeochem. Cycles 8, 451-463 (1994)
- 41 Nauhaus, K., Boetius, A., Kruger, M. & Widdel, F. In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ. Microbiol. 4, 296-305 (2002).
- 42 Nauhaus, K., Treude, T., Boetius, A. & Krüger, M. Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Environ. Microbiol. 7, 98-106 (2005).
- Schouten, S., Wakeham, S. G., Hopmans, E. C. & Damste, J. S. S. Biogeochemical evidence that thermophilic archaea mediate the anaerobic oxidation of methane. Appl. Environ. Microbiol. 69, 1680-1686 (2003).
- Kallmeyer, J. & Boetius, A. Effects of temperature and 44 pressure on sulfate reduction and anaerobic oxidation of methane in hydrothermal sediments of Guaymas Basin Appl. Environ. Microbiol. 70, 1231-1233 (2004). 45
- Boetius, A. Lost City life. Science 307, 1420-1422 (2005). 46
- Moran, J. J. et al. Methyl sulfides as intermediates in the anaerobic oxidation of methane. Environ. Microbiol. 10, 162-173 (2008).

- 47. Bada, J. L. & Lazcano, A. Some like it hot, but not the first biomolecules. Science 296, 1982-1983 (2002). 48
- Orgel, L. E. The implausibility of metabolic cycles on the prebiotic Earth, PLoS Biol. 6, e18 (2008). 49 Fuchs, G. CO, fixation in acetogenic bacteria:
- variations on a theme. FEMS Microbiol. Rev. 39, 181-213 (1986). 50 Fuchs, G. & Stupperich, E. in Evolution of Prokaryotes
- (eds Schleifer, K. H. & Stackebrandt, E.) 235-251 (Academic, London, 1985). 51
- Berg, I. A., Kockelkorn, D., Buckel, W. & Fuchs, G. A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in Archaea.
- *Science* **318**, 1782–1786 (2007). Thauer, R. K. A fifth pathway of carbon fixation. *Science* **318**, 1732–1733 (2007). 52
- 53 Thauer, R. K., Kaster, A. K., Seedorf, H., Buckel, W. & Hedderich R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nature Rev Microbiol 6 579-591 (2008) Provides the most recent summary of methanogen bioenergetics and explains important and newly recognized differences in the energy metabolism of methanogens that possess cytochromes compared with those that lack cytochromes.
- 54 Müller, V. Energy conservation in acetogenic bacteria Appl. Environ. Microbiol. 69, 6345-6353 (2003). Maden, B. E. H. Tetrahydrofolate and 55
- tetrahydromethanopterin compared: functionally distinct carriers in C1 metabolism. Biochem. J. 350, 609-629 (2000).
- 56. Rother, M. & Metcalf, W. W. Anaerobic growth of Methanosarcina acetivorans C2A on carbon monoxide: an unusual way of life for a methanogenic archaeon. Proc. Natl Acad. Sci. USA 101, 16929-16934 (2004).
- 57 Shock, E. L. Geochemical constraints on the origin of organic compounds in hydrothermal systems. Orig. Life Evol. Biosph. 20, 331-367 (1990)
- Shock, E. L., McCollom, T. M. & Schulte, M. D 58 in Thermophiles: The Keys to Molecular Evolution and The Origin of Life? (eds Wiegel, J. & Adams, M. W. W.) 59-76 (Taylor and Francis, London, 1998).
- McCollom, T. M. & Seewald, J. S. Experimental constraints on the hydrothermal reactivity of organic acids and acid anions: I. Formic acid and formate Geochim. Cosmochim. Acta **67**, 3625–3644 (2003). McCollom, T. M. & Seewald J. S. Abiotic synthesis of
- 60 organic compounds in deep-sea hydrothermal environments. Chem. Rev. 107, 382-401 (2007)
- Lang, S. Q., Butterfield, D., Hedges, J. & Lilley, M. 61 Production of isotopically heavy dissolved organic carbon in the Lost City Hydrothermal Vent Field. *Eos Trans. AGU* **86**, V43C–06 (2005).
- Lang, S. Q., Butterfield, D. & Lilley, M. Organic 62 geochemistry of Lost City Hydrothermal fluids. InterRidge Theoretical Institute 'Biogeochemical interaction at deep-sea vents' [online], http:// interridge.whoi.edu/files/interridge/Lang.pdf (2007).
- 63 Martin, W. & Russell, M. J. On the origin of biochemistry at an alkaline hydrothermal vent. Philos. Trans. R. Soc. Lond. B 367, 1187-1925 (2007).
- 64 Russell, M. J. & Hall, A. J. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J. Geol. Soc. London 154, 377-402 (1997).
- Cody, G. D. Transition metal sulfides and the origin of 65 metabolism. Annu. Rev. Earth Planet. Sci. 32, 569-599 (2004).
- 66 Heinen, W. & Lauwers, A. M. Organic sulfur compounds resulting from the interaction of iron sulfide, hydrogen sulfide and carbon dioxide in an anaerobic aqueous environment. Orig. Life Evol. Biosph. 26, 131–150 (1996). Detected Fe(II)- and hydrogen sulphide-dependent

CO, reduction of methyl sulphide and other compounds under mild conditions as might have been encountered in Hadean hydrothermal vents.

- 67 Huber, C. & Wächtershäuser, G. Activated acetic acid by carbon fixation on (Fe, Ni)S under primordial conditions. *Science* **276**, 245–247 (1997). Detected Fe(II)- and Ni(II)-dependent synthesis of acetate and the thioester acetyl methyl sulphide from CO and methyl sulfide under conditions as might have been encountered in Hadean hydrothermal vents.
- Wächtershäuser, G. From volcanic origins of 68 chemoautotrophic life to Bacteria, Archaea and Eukarya. Philos. Trans. R. Soc. Lond. B 361, 1787-1806 (2006).

- Ferry, J. G. & House, C. H. The step-wise evolution of 69 early life driven by energy conservation. Mol. Biol Evol. 23, 1286-1292 (2006)
- Leman, L., Orgel, L. & Ghadiri, M. R. Carbonyl sulfide-70 mediated prebiotic formation of peptides. Science 306, 283-286 (2004).
- 71 Russell, M. J., Daniel, R. M., Hall, A. J. & Sherringham, J. A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life. J. Mol. Evol. 39, 231–243 (1994).
- Amend, J. P. & Shock, E. L. Energetics of overall 72 metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol. Rev. 25, 175–243 (2001). Mitchell, P. Coupling of phosphorylation to electron
- 73 and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191, 144-148 (1961).
- 74 Berry, S. The chemical basis of membrane bioenergetics. J. Mol. Evol. 54, 595–613 (2002). Schäfer, G., Engelhard, M. & Müller, V. Bioenergetics of the Archaea. Microbiol. Mol. Biol. Rev. 63, 75
- 570-620 (1999).
- Baymann, F. et al. The redox protein construction kit: 76 pre-last universal common ancestor evolution of energy conserving enzymes. *Philos. Trans. R. Soc.* Lond, B **358**, 267–274 (2003).
- Junge, W. ATP synthase and other motor proteins. 77 Proc. Natl Acad. Sci. USA 96, 4735-4737 (1999)
- Murata, T., Yamato, I., Kakinuma, Y., Leslie, A. G. W. & 78 Walker, J. E. Structure of the rotor of the V-type Na⁺ ATPase from Enterococcus hirae. Science 308 654-659 (2005)
- Kaesler, B. & Schönheit, P. The role of sodium ions in 79 methanogenesis. Formaldehyde oxidation to CO₂ and 2 H₂ in methanogenic bacteria is coupled with primary electrogenic Na+ translocation at a stoichiometry of 2–3 Na⁺/CO₂. *Eur. J. Biochem.* **184**, 223–232 (1989). Baaske, P., Weinert, F. M., Duhr, S., Lemke, K. H.,
- 80 Russell, M. J. & Braun, D. Extreme accumulation of nucleotides in simulated hydrothermal pore systems Proc. Natl Acad. Sci. USA 104, 9346-9351 (2007).
- 81 Braun, D. & Libchaber, A. Thermal force approach to molecular evolution. *Phys. Biol.* **1**, P1–P8 (2004).
- Koonin, E. V. An RNA-making reactor for the origin of 82 life. Proc. Natl Acad. Sci. USA 104, 9105-9106 (2007)
- 83 Joyce, G. F. The antiquity of RNA-based evolution. Nature 418, 214-221 (2002)
- 84 Oparin, A. I. The Origin of Life (Dover, New York, 1952)
- 85 Haldane, J. B. S. The origin of life. Rationalist Annual 148.3-10 (1929).

- 86 Miller, S. L. A production of amino acids under possible primitive Earth conditions. Science 117. . 528–529 (1953)
- Bada, J. L. How life began on Earth: a status report. *Earth Planet. Sci. Lett.* **226**, 1–15 (2004). 87
- Orgel, L. E. Prebiotic chemistry and the origin of the 88 RNA World. Crit. Rev. Biochem. Mol. Biol. 39, 99-123 (2004)
- de Duve, C. Vital Dust: Life as a Cosmic Imperative 89 (Basic Books, New York, 1995).
- Schulte, M., Blake, D., Hoehler, T. & McCollom, T. M. 90 Serpentinization and its implications for life on the early Earth and Mars. Astrobiology 6, 364-376 (2006)
- 91. Bach, W. et al. Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274). Geophys. Res.
- *Lett.* **33**, L13306 (2006). Sleep, N. H., Meibom, A., Fridriksson, T., Coleman, R. G. & Bird, D. K. H₂-rich fluids from serpentinization: 92 geochemical and biotic implications. Proc. Natl Acad. Sci. USA 101, 12818-12823 (2004).
- Fisher, A. T. Marine hydrogeology: recent 93 accomplishments and future opportunities. Hudrogeol. J. **13**. 69–97 (2005).
- Cech, T. R. A model for the RNA-catalyzed replication 94 of RNA. Proc. Natl Acad. Sci. USA 83, 4360-4363 (1986)
- Gilbert, W. The RNA world, Nature 319, 618 (1986). 95 96
- White, H. B. Coenzymes as fossils of an earlier metabolic state. *J. Mol. Evol.* **7**, 101–104 (1976). Bartoschek, S., Vorholt, J. A., Thauer. R. K.,
- Geierstanger, B. H. & Griesinger, C. N-carboxymethanofuran (carbamate) formation from methanofuran and CO₂ in methanogenic archaea. Thermodynamics and kinetics of the spontaneous reaction. Eur. J. Biochem. 267, 3130-3138 (2000).
- Morowitz, H. J., Kostelnik, J. D., Yang, J. & Cody, G. D. 98 The origin of intermediary metabolism. *Proc. Natl Acad. Sci. USA* **97**, 7704–7708 (2000). Schrenk, M. O., Kelley, D. S., Delaney, J. R. & Baross,
- 99 J. A. Incidence and diversity of microorganisms within the walls of an active deep-sea sulfide chimney. Appl. Environ. Microbiol. 69, 3580-3592 (2003).
- 100. Pagé, A., Tivey, M. K., Stakes, D. S. & Reysenbach, A.-L. Temporal and spatial archaeal colonization of hydrothermal vent deposits. Environ. Microbiol. 10, 874-884 (2008).
- Seewald, J. S., Zolotov, M. Y. & McCollom, T. M. 101 Experimental investigation of single carbon

compounds under hydrothermal conditions. Geochim. Cosmochim. Acta 70, 446-460 (2006) Provides important insights into the chemical equilibria and speciation of C, intermediates in the reaction of H₂ and CO₂ to CH₄ under conditions that simulate submarine hydrothermal vents. This study showed that formate and CO are readily generated from CO₂ and H. and revealed kinetic barriers to CH, formation.

- 102. Imkamp, F., Biegel, E., Jayamani, E., Buckel, W. & Müller, V. Dissection of the caffeate respiratory chain in the acetogen Acetobacterium woodii: identification of an Rnf-type NADH dehydrogenase as a potential coupling site. *J. Bacteriol.* **189**, 8145-8153 (2007).
- 103. Edwards, K. J., Bach, W. & McColluom, T. M. Geomicrobiology in oceanography: microbe-mineral interactions at and below the seafloor. *Trends Microbiol.* **13**, 449–456 (2005). 104. Kashefi, K., Holmes, D. E., Lovley, D. R. & Tor, J. M.
- in The Subseafloor Biosphere at Mid-Ocean Ridges (eds Wilcock, W. S. D., DeLong, E. F., Kelley, D. S.,
- Baross, J. A. & Cary, S. C.) 199–212 (American Geophysical Union, Washington DC, 2004).
 Campbell, B. J. & Engel, A. S. The versatile e-proteobacteria: key players in sulphidic habitats. *Nature Rev. Microbiol.* 4, 458–468 (2006).
- Vargas, M., Kashefi, K., Blunt-Harris, E. L. & Lovley, 106 D. R. Microbiological evidence for Fe(III) reduction on early Earth. *Nature* **395**, 65–67 (1998).

Acknowledgements

We thank J. F. Allen, N. Lane and C. Schmidt for comments. M.J.R. is supported by the Jet Propulsion Laboratory, California Institute of Technology, through a contract from the National Aeronautics and Space Administration, D.K. and J.B. are supported by a grant from the National Science Foundation (grant number OCE-0137206) and a grant from the National Oceanic and Atmospheric Administration Office of Exploration. J.B. received additional support from the NASA Astrobiology Institute through the Cornegie Geophysical Institute. W.M. is supported, in part, by a Juliusvon-Haast Fellowship from the government of New Zealand and by the Deutsche Forschungsgemeinschaft.

SUPPLEMENTARY INFORMATION See online article: S1 (figure) ALL LINKS ARE ACTIVE IN THE ONLINE PDF