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Carbon—Metal Bonds: Rare and Primordial

N Metabolism

William F. Martin®*

Submarine hydrothermal vents are rich in hydrogen (H,), an ancient source of elec-
trons and chemical energy for life. Geochemical H, stems from serpentinization,
a process in which rock-bound iron reduces water to H,. Reactions involving H,
and carbon dioxide (CO,) in hydrothermal systems generate abiotic methane
and formate; these reactions resemble the core energy metabolism of
methanogens and acetogens. These organisms are strict anaerobic autotrophs
that inhabit hydrothermal vents and harness energy via Ho-dependent CO, reduc-
tion. Serpentinization also generates native metals, which can reduce CO, to
formate and acetate in the laboratory. The enzymes that channel H,, CO,, and
dinitrogen (N,) into methanogen and acetogen metabolism are the backbone of
the most ancient metabolic pathways. Their active sites share carbon-metal
bonds which, although rare in biology, are conserved relics of primordial biochem-
istry present at the origin of life.

Metabolism Emerged from Geochemical Reactions

Intuition has it that there are some traces of ancient chemical evolution preserved in modern
metabolism. This idea is germane to the continuity thesis (see Glossary) that unites theories
viewing the origin of life as inherently probable because physical and chemical constraints
apply uniformly across the transition from inanimate to living matter [1]. As such, continuity is
inherent to theories about ancient metabolism that address transitions from inorganic geochem-
ical settings to biochemical processes, because they embrace justified supposition that reactants
and catalysts in the former gave rise to reactions in the latter. Life is a chemical reaction. It started
out under anaerobic conditions [2] because molecular oxygen is a product of microbial metabo-
lism. If we look for chemical continuity between the geochemical setting where life arose and
modern microbial metabolism, there are two places to look: energetics and catalysts. The pursuit
of chemical continuity in energetics leads directly to the main exergonic (energy-releasing)
reactions (the core bioenergetic reactions) that cells harness to conserve energy. There are
hundreds of core bioenergetic reactions that anaerobes tap to conserve energy [2,3], but the
only environments known that harbor naturally occurring reactions with bona fide similarity to
bioenergetic reactions are hydrothermal vents. These vents harbor rock-water—carbon interac-
tions that take place deep in the crust of the Earth in the strict absence of oxygen [4-9]. Those
geochemical reactions generate large amounts of H, that in turn reduces CO, to generate
formate and methane, which emerge in the vent effluent [4—7]. The CO,-reducing geochemical
reactions share in turn conspicuous similarity to the core bioenergetic reactions of some modern
Ho-dependent anaerobes [8,9], the acetogens [10] and methanogens [11], strictly anaerobic
autotrophs that satisfy both their carbon and their energy needs from H, and COs.

|deas about the continuity of catalysts that promote the chemical reactions of life center around
organic cofactors, thioesters, and iron sulfide (FeS) clusters, all of which are presumed to
have preceded enzymes in evolution. Organic cofactors are essential to biochemistry [12]. In
many metabolic reactions, the cofactor provides the catalysis, the enzyme just holds it in place
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and provides a hydrophobic pocket where cofactor and substrate can react [13]. The popular
idea of an RNA world [14] arose around the concept that cofactors preceded enzymes in evolu-
tion and were originally connected to RNA molecules as the precursors of proteins [15].
Thioesters have long been recognized as being central to metabolism [8,16]. The thioester
bond is long and easily cleaved [17], making them highly reactive [18]. Thioester bonds have a
high free energy of hydrolysis (—-43 kd/mol), higher than that of ATP (-31 kd/mol) [8], which is
often generated from thioesters in metabolism. Thioesters are thought to have preceded phos-
phates as energy currencies in evolution [16,19] and they can be synthesized in the laboratory
from carbon monoxide (CO) and methyl sulfide in the presence of FeS [20], compounds that
were likely present on the primordial Earth [8]. FeS clusters are traditionally viewed as primitive
catalysts in metabolism because they are completely inorganic and because metal sulfides
would have been common on the early Earth [21,22]. Reduced FeS clusters are also a currency
of chemical energy [23,24], similar to thioesters and ATP. They are also highly enriched in geno-
mic reconstructions of the metabolism of the last universal common ancestor (LUCA) [25],
which used the acetyl-CoA pathway and lived off gases, harnessing energy by reducing CO»
with Hy [26]. Physiology is rich in continuity because some 4 billion years after the origin of life
[27] ,the same chemical energy that powered LUCA still fuels the growth of modern methanogens
and acetogens that inhabit the crust today [28-32].

If the continuity principle holds at the active sites of enzymes, then enzymes with which anaerobes
access CO,, No, and H, at the interface between the environment and biology can provide
insights into the nature of primordial metabolism. Here, | discuss ancient enzymes at the core
of metabolism in autotrophs that harness carbon and energy via the reduction of CO, with H,. |
make the case that their shared common structural feature that is otherwise very rare in biology
(carbon-metal bonds) reflects chemical reactions and catalysts that were significant in the evolu-
tionary context of the origin of life.

Carbon on the Early Earth: The Starting Point

Any discussion about carbon chemistry before enzymes or biochemistry at the origin of life is
aided by considering benchmarks concerning the chemistry of the early Earth, which provides
many helpful constraints. First, it constrains the times at which these reactions could have started.
The moon-forming impact approximately 4.5 billion years ago is a crucial benchmark because it
turned the Earth into a ball of boiling magma of at least 1500°C [33], too hot for any organic com-
pounds or anything resembling life. It is certain that the Earth was completely molten because it is
spherical; the moon-forming impact left no crater. Second, it constricts what compounds were
initially available. Magma converted carbon on Earth into atmospheric CO, [33-35]. With the
Earth in a molten state, gravity caused dense material-like native metals, such as iron and nickel,
to sink to the core, with lighter material, such as silicates, differentiating to the surface [34,35]. By
approximately 4.2 billion years ago, the surface had cooled, rock had formed, and water vapor
had condensed to oceans [33-35]. Water was drawn into cracks in the crust, became heated
at depth and circulated back into the ocean, giving rise to hydrothermal systems. Atmospheric
CO, became dissolved in the ocean, was sequestered in the crust as carbonates via hydrother-
mal convection, and then transferred to the mantle via subduction [33-35]. At depths of several
kilometers within the crust, water circulating in hydrothermal convective currents began reacting
with inexhaustible reserves of iron Il [Fe(ll)]-containing minerals to initiate an important geochem-
ical process: serpentinization [34-36].

During serpentinization, Fe(ll) minerals are oxidized by water (H-O) to generate Fe(lll) and Ho gas.
Serpentinization is exergonic in that it releases energy [4,5] in a process that continues to this day
[37]. The effluent of modern hydrothermal vents often contains ~10 mM H, [38], orders of mag-
nitude more than H,-dependent microbes require for growth [11]. At some sites, hydrothermal
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Glossary

Acetogens: organisms that generate
acetate (and water) as the sole
end-product of their main bioenergetic
reaction (sometimes also called
homoacetogens). All acetogens
characterized so far belong to the
bacteria.

Autotrophy: a trophic (nutritional) mode
in which the cell satisfies its carbon
needs from CO.. The opposite of
autotrophy is heterotrophy, a trophic
mode in which the cell satisfies its
carbon needs from reduced organic
compounds.

Awaruite: a naturally occurring nickel
iron alloy, typically NisFe, that is formed
from the divalent metals in serpentinizing
hydrothermal systems, probably during
phases of high H, production.
Bioenergetic reactions: energy-
releasing reactions that cells use to
conserve chemical energy. The most
common currency of biochemical
energy is ATP, but there are other energy
currencies used in cell metabolism,
including acyl phosphates, thioesters,
reduced ferredoxin, or ion gradients.
Continuity thesis: a philosophical
construct that separates scientific from
vitalistic thought on the nature of
self-organization. It unites theories
viewing the origin of life as inherently
probable based on their shared premise
that physical and chemical constraints
apply uniformly across the transition
from inanimate to living matter. It
distinguishes them from theories viewing
the origin of life as so improbable that
supernatural influence was required for
life to arise from the elements on the
early Earth.

Electron bifurcation (flavin based): a
soluble mechanism of energy
conservation that generates reduced
ferredoxin as the energy currency. In
flavin-based electron bifurcation, an
electron pair is split at a flavoprotein. One
electron is transferred energetically
‘downhill’ to an acceptor with a more
positive midpoint potential than the
donor, the other is transferred
energetically ‘uphill’ to an acceptor with
a more negative midpoint potential, a
low potential ferredoxin in cases studied
so far.

Last universal common ancestor
(LUCA): a hypothetical entity,
envisaged by some as an organism,
envisaged by others as a geochemically
supported chemical reaction, that had



effluent also contains abiotic methane and other reduced carbon compounds that result from
H, interacting with inorganic carbon, such as CO,, in the crust [4-7,34-38]. Whether with or
without enzymes, in the reaction of H, with CO,, the equilibrium lies on the side of reduced
carbon compounds [3]. Among the many core bioenergetic reactions known [2], only
acetogens [10] and methanogens [11] are known to harness energy solely from the reduction
of CO, with H,. The deep biosphere of the Earth is replete with acetogens and methanogens
[28-32]. Considering the origins of ancient metabolism from the standpoint of geochemical
constraints, the exergonic reduction of CO, with H, comes into focus as an ancient bioener-
getic route [4-7,34-38].

Carbon-Metal Bonds in CO, Fixation Pathways

CO, fixation also constrains biochemical origins, because, as hinted at earlier, CO, was the
starting point for biological carbon. Autotrophs, whether they obtain their electrons from H, like
acetogens and methanogens do, or from other electron donors with the help of chlorophyill-
based photosynthesis, comprise the basis of all food chains [39], Among modern microbes,
there are six known pathways of biological CO, fixation in nature [40] the Calvin cycle, the reverse
citric acid (TCA) cycle, and the acetyl-CoA (or Wood-Ljungdahl) pathway [41,42], as well as three
pathways described by Georg Fuchs and colleagues: the dicarboxylate/4-hydroxybutyrate cycle,
the 3-hydroxypropionate/4-hydroxybutyrate cycle, and the 3-hydroxypropionate bi-cycle [43].
Among those six, the acetyl-CoA pathway is the only one that occurs in both archaea and
bacteria [40,43], suggesting that it is the most ancient CO, fixation pathway. Furthermore, its
distribution among acetogens (bacteria) and methanogens (archaea) is not the result of lateral
gene transfer (LGT); different C1 carriers are used in their pathways, and the enzymes of the
methyl synthesis branch in bacteria are unrelated to those of archaea [44].

Thermodynamics also constrain biochemical origins. The acetyl-CoA pathway is exergonic [41,
43] and is used by acetogens and methanogens to generate ion gradients that are harnessed
by ATPases to satisfy the core ATP needs of the cell while simultaneously supplying reduced
carbon [43]. Although the acetyl-CoA pathway as it occurs in acetogens entails consumption
of one ATP at the formyltetrahydrofolate synthase reaction [10], one ATP is generated at the
acetate kinase reaction [10], such that acetate synthesis from CO, involves no net ATP input,
while ions pumped during acetate synthesis reduction fuel ATP synthesis via the F{Fo ATP
synthase at the plasma membrane [10]. Put simply, the acetyl-CoA pathway is carbon and energy
metabolism in one, although its main role in acetogens and methanogens is energy. Approxi-
mately 95% of the CO, that the acetyl-CoA pathway reduces in acetogens and methanogens
leaves the cell in the form of acetate or methane as the end-product of energy harnessing, with
CO, incorporation as cell mass having a quantitatively lesser role [11,45]. For example, in
acetogens, ~24 molecules of CO, are excreted as acetate during ATP synthesis for each CO»
that is incorporated as cell mass [45], whereas, in methanogens, ~20 molecules of methane
are synthesized for each CO, fixed [11]. By contrast, the other CO, fixation pathways require
net ATP input, meaning that some independent form of energy metabolism is required to support
CO, fixation [8,46]; the amounts of energy required by other CO, fixation pathways can be found
in [46].

The key enzymes of the acetyl-CoA pathway are CO dehydrogenase (CODH) and acetyl-CoA
synthase (ACS) [47]. Although there are over 400 known reactions in metabolism that involve
the assimilation or dissimilation of CO,, there is only one portal for CO entry into metabolism:
the CODH reaction [48]. CODH synthesizes CO from CO, [42,43]. The role of CO in metabolism
is specific; energy is released by the acetyl-CoA pathway during the conversion of a CO-derived
carbonyl group to a carboxylate [48], while the other CO, fixation routes reduce carboxylate
groups to carbonyls [40,41,43,46].
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the genetic code that gave rise to all life
on Earth.

Lateral gene transfer (LGT):
inheritance of genes by mechanisms
other than simple cell division-coupled
chromosome replication, for example by
plasmids (conjugation), phage
(transduction), or naked DNA uptake
(transformation).

Methanogens: organisms that
generate methane as the end-product of
their main bioenergetic reaction. All
methanogens known so far belong to
the Archaea.

Native metals: zero valent metals, that
is, metals in the elemental state.
Organometallic compounds:
substances with one or more covalent
bonds between a carbon atom and a
metal atom. The corresponding bonds
are called organometallic bonds,
metal-carbon bonds, or carbon-metal
bonds.

Serpentinization: a spontaneous,
abiotic, geochemical process in which
water circulating through hydrothermal
systems is reduced to Hp by
Fe(ll)-containing minerals in the crust.
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ACS condenses a methyl group and CO to an acetyl group that is covalently bound to the enzyme
and removed by the thiol of coenzyme A to yield the energy-rich thioester acetyl-CoA [49,50]. The
methyl group is donated to ACS via methylcobalamin in the corrinoid FeS protein, CoFeS [51-54],
which performs an unusual metal-to-metal methyl transfer reaction. The teams of Steve Ragsdale
and Holger Dobbek have generated high-resolution structures of the active sites of CODH
[65-57], ACS [56,58-60], and CoFeS [51,52,54]. Importantly, all three active sites are ancient,
tracing to the genome of the LUCA [25]. More importantly, in the context of this paper, all three
active sites represent organometallic compounds; that is, they contain carbon—-metal bonds
(Figure 1). The acetyl-CoA pathway can even be emulated by reactions between native metals
and COs in laboratory experiments, narrowing the gaps between the geochemical and biochem-
ical reactions of carbon (Box 1).

Ancient Metabolic Networks

The acetyl-CoA pathway requires high concentrations of reduced low potential ferredoxin to op-
erate [10,23,42,43,61-63]. The acetyl-CoA pathway and ferredoxin are both replete with metals,
and both figure prominently in studies of biochemical pathway evolution. Metabolic pathways
themselves should contain information about how they interacted with, and emerged from, the
ancient environment [12]. Each genome encodes a collection of enzymes that supports life,
and those enzymes catalyze reactions that connect substrates, generating a metabolic network
for each organism. Goldford et al. [16] recently probed metabolic networks to see whether there
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Figure 1. Carbon-Metal Bonds. (A) Carbon dioxide (CO,) fixation: the structure of the carbon-nickel bond in the carbon monoxide dehydrogenase (CODH) reaction
intermediate shown is according to Dobbek et al. [55], Jeoung and Dobbeck [59], and Can et al. [49,50]. The structure of carbon-nickel bonds in the acetyl-CoA synthase
(ACS) A-cluster is redrawn from Svetlitchnyi et al. [58] and Can et al. [49]. Methylcobalamin, a cofactor in the CO, fixation pathway, performs metal-to-metal methyl transfer
from corrinoid iron sulfur protein (CoFeS) to the A cluster of ACS [51,52]. (B) N, fixation: the structure of the carbon—iron bond in the nitrogenase M cluster is redrawn from
Hu and Ribbe [83], Anderson et al. [77], Raugei et al. [85], and Cao et al. [86]. (C) H, oxidation: the structures of carbon-iron bonds in [Fe-Ni] hydrogenase [87,88], [Fe]
hydrogenase [88,89], and [Fe—Fe] hydrogenase [88,90,91]. (D) Radical formation: the structures of adenosylcobalamin and the radical S-adenosyl methionine (SAM)
intermediate omega are redrawn from [93,99,100]. Active sites and cofactors that trace to the last universal common ancestor (LUCA) [25] are indicated with a dot.

Carbon-metal bonds are highlighted in black.
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Box 1. Native Metals in Ancient Metabolism

If microbial physiology arose from inorganically catalyzed acetate and methane-forming reactions at hydrothermal vents
[7,8], then inorganically catalyzed acetate and methane synthesis reactions should take place in the laboratory without
the help of cells. Although hydrothermal vents naturally generate methane, formate [4,5], and other organic compounds
[37] under conditions where geochemical H, synthesis is active, laboratory simulations of such reactions using iron
minerals have traditionally delivered slow rates and steep challenges [7].

However, in the presence of native metals, the corresponding organic syntheses in the laboratory become facile. Native
iron, a pure metal, efficiently generates acetate and formate in laboratory experiments [111,112]. Moreover, Varma et al.
recently showed that both native nickel and native iron catalyze the synthesis of formate, methyl groups, acetate, and
pyruvate in micromolar to millimolar concentrations, rather exactly retracing the steps of the acetyl-CoA pathway [113].
When Varma et al. performed the reactions, the reaction products remained bound to the surface of the metals, such that
they had to be cleaved by alkaline lysis to be measured; however, it was not determined whether the products were bound
to the metals by carbon-metal or by oxygen-metal bonds [113]. Additionally, the natural iron nickel alloy awaruite (NisFe)
has been shown to catalyze the synthesis of methane from CO, and H, at temperatures between 200°C and 400°C [114].
Native metals have interesting properties in the context of early metabolic evolution [114]. Furthermore, native iron can
serve as the electron donor for the growth of both methanogens [116,117] and acetogens [118,119], although the exact
mechanism of electron flow from the metal to metabolism remains unresolved [119].

It is possible that native metals are catalyzing the organic syntheses reported in modern hydrothermal vents [36]. Awaruite
is common in rocks that host serpentinizing hydrothermal systems, because it is formed during serpentinization in phases
where high H, partial pressures occur [121]. The reason why native nickel and native iron catalyze the synthesis of inter-
mediates and end-products of the acetyl-CoA pathway [113] more efficiently than Fe(ll) minerals, such as FeS [122], is
mechanistic: CO, reduction in biology occurs via two-electron reactions [43]. Under anaerobic conditions, native iron
and nickel readily undergo two-electron reactions, but FeS minerals can only undergo one-electron reactions, Fe(ll) to
Fe(lll) valence changes [22,123], unless external electrical current is applied [124]. Native iron even catalyzes amino acid
synthesis [125]. In the presence of native nickel and iron, the acetyl-CoA pathway emerges from H,O and CO, [113],
setting it apart from other segments of physiology as a simple and natural starting point for biochemical origins.

are traces of biochemical reactions that might have existed before ATP became the universal
energy currency. For that, they looked at metabolic networks to see whether an ancient core
remains if all the ATP-dependent reactions are removed. They found such a core comprising
260 metabolites connected by 315 reactions, some of which were still energetically uphill.
Those energetically uphill reactions did not involve ATP but did involve two currencies of ancient
metabolic energy instead: thioesters and FeS-dependent reactions.

The involvement in ancient core metabolism of thioesters, which have a high free energy of hydrolysis
and are an energy currency similar to ATP [16], meshes well with the findings of Semenov et al. [18],
who constructed thioester-driven systems of oscillating chemical reactions in the laboratory. Further-
more, the involvement of FeS-dependent reactions in the ancient core network [16] fits well with the
biochemical axiom that metals and FeS clusters are relics of ancient metabolism [21,22,64-66]. In an
origin of life context, FeS clusters are usually discussed as ancient catalysts [22,66-68]. However,
their main role in metabolism is not in catalyzing reactions, but rather in enabling electron flow via
one-electron-transfer reactions [69,70]. In cells that harness H, as a source of electrons for carbon
and energy metabolism, electrons enter metabolism via hydrogenases and a soluble FeS protein
called ferredoxin, 90% of which is present in the reduced form in growing anaerobes [61] at concen-
trations of ~80-400 uM [39,71]. The generation of reduced ferredoxin from H, is an energetic
challenge in its own right and involves the process of flavin-based electron bifurcation, which is
the most recently recognized mechanism of biological energy conservation [23,24,61-63]. The
ancient core metabolic network uncovered by Goldford et al. [16] underscores the antiquity of the
acetyl-CoA pathway, thioesters, and FeS-dependent reactions at the onset of metabolic evolution.

Tracing Ancient Metabolic Pathways through Genomic Analysis
Genomes harbor another resource that can be tapped to probe ancient evolution: gene
sequences that can be used to generate phylogenetic trees. The standard approach to
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investigate early evolution with phylogeny has been to make trees of some conserved component
of the cell, such as the ribosome, and to map biochemical pathways or physiological traits onto
the tree to infer what might be ancient by scoring the properties of the lineages that branch
deep. However, LGT often underlies gene distributions among bacteria and archaea [72] and
the evolution of genes that define physiological traits [39].

The LGT problem is quantitatively severe [72,73]. A recent study investigated trees for all 250 000
prokaryotic genes families (clusters) from 2000 genomes that are sufficiently conserved to make
trees [25]. Approximately 11 000 of the clusters had homologs in bacteria and Archaea, but 97%
of those trees uncovered evidence for LGT between bacteria and archaea [25]. The remaining 3%
(355 of the 11 000 present in archaea and bacteria) recovered monophyly for archaea and
bacteria [25]. That does not mean that those 355 genes were inherited vertically, but it does
mean that they were likely present in the common ancestor of bacteria and Archaea, which in
current views was the LUCA.

Those 355 genes shed light on the physiology and habitat of LUCA, depicting it as an anaerobic
thermophile that was rich in transition metal clusters, one-electron reactions, radical S-adenosyl
methionine (SAM) enzymes, and methyl transferase reactions [25,26]. Regarding ancient metab-
olism, genomes point in the same direction as the early Earth environments, energetics, and
networks described earlier: LUCA used the acetyl-CoA pathway and lived off gases including
Ho, CO,, CO, and N, [25,26]. Moreover, the known organometallic bonds of modern metabolism
clearly tend to cluster in LUCA (Figure 1) [25,26].

Carbon-Metal Bonds in Nitrogen Fixation

Cell mass is 50% protein and 20% RNA [74], corresponding to 50% carbon and 10% nitrogen by
dry weight. Given that proteins and RNA are indispensable for life, the entry of nitrogen into me-
tabolism is crucial to metabolism, both modern and ancient. While H, and CO, readily provide
carbon energy and electrons for acetogens and methanogens, nitrogen must also be provided
for cells to grow. In modern ecosystems, the source of nitrogen is No, and there is only one
enzyme known that can reduce Na: nitrogenase. Nitrogenase is an ancient enzyme [75] the
subunits of which trace to LUCA [25,76]. There is only one basic type of nitrogenase active
site, which can contain molybdenum (Mo), vanadium (V), or Fe [76,77]. The active site of
nitrogenase points to a unique biological solution for a hard chemical problem. The center of
the nitrogenase active site harbors a carbide carbon atom that is complexed by iron [78,79]. It
is the only biological carbide described to date. Its insertion starts from the methyl group of
SAM [80,81], an ancient cofactor that also had a central role in the physiology of LUCA [25].
The nitrogenase active site (Figure 1) has a phenomenal spectrum of enzymatic activities. Not
only is it the biological model for the Haber—Bosch process of ammonium synthesis from N»
[36,77], but it also catalyzes industrially relevant reactions involving carbon. These include
Fischer-Tropsch reactions (hydrocarbon synthesis from CO,), although sometimes at low
rates, as well as reactions of various organic and inorganic nitrogen compounds [82—-84]. Nitro-
genase accepts electrons from low potential ferredoxin, which is generated in Ho-dependent
diazotrophs via hydrogenase with the help of electron bifurcation [61-63]. According to
current structural models [76,77,85,86], the atom that binds N5 is Fe, not Mo or V (or the
Mo-corresponding Fe) in the three nitrogenase isoforms. The carbide, which has not yet been
identified in the Fe enzyme [76], is encased in carbon-metal bonds (Figure 1).

Carbon-Metal Bonds in Hydrogen Oxidation

Before the origin of photosynthesis, H, was the source of electrons for primary production [39].
These electrons come into metabolism via the action of the enzyme hydrogenase. Three types
of hydrogenase active site are known: [Fe—-Ni] hydrogenase [87,88], [Fe] hydrogenase [88,89],
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and [Fe-Fe] hydrogenase [88,90,91] (Figure 1). The three proteins are structurally unrelated [88]
and their active sites are also different and require different maturases [64,91-93]. Specifically,
the [Fe—Ni] active site is found in bacteria and archaea, occurring as a functional module in
many enzymes, including soluble hydrogenases [87], membrane-bound hydrogenases related
to complex | of the respiratory chain [94], Ho-dependent CO, reductase [95], and many others
[96]. [Fe—Ni] hydrogenase subunits trace to LUCA [25]. [Fe-Fe] hydrogenase has only been
found among bacteria [88] and eukaryotes [97]. It has an essential role in electron bifurcation
[61], both in the H,-oxidizing direction in acetogens [10] and in the Ha-producing direction in fer-
menters [92,98]. [Fe] hydrogenase has only been found among Archaea so far, where it has an
important role in methanogenesis [11]. Given that it relates to LUCA, the distributions of [Fe—Fe]
hydrogenase (bacteria) and [Fe] hydrogenase (archaea), in light of their crucial role in Ho-
dependent acetogenesis and methanogenesis, suggest an origin of these two hydrogenases
at the base of the respective domains, subsequent to divergence from LUCA, but before the
origin of free-living Ho-dependent cells (Figure 2). Although they have structurally distinct active
sites and unrelated polypeptide sequences, all three hydrogenases harbor carbon-metal
bonds as ligands (Figure 1), reflecting evolutionary convergence [92] driven by constraints
imposed by reaction mechanisms.
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Figure 2. Schematic Depiction of Early Physiological Evolution in a Hydrothermal Setting. Carbon-metal bonds
are involved in the entry of hydrogen (H,) and dinitrogen (N») into metabolism, and in the exergonic pathway of biological
carbon dioxide (CO,) reduction. According to genomic studies, the last universal common ancestor (LUCA) may have
inhabited a hydrothermal setting and lived off gases [25,26], because several enzymes and cofactors with carbon-metal
bonds trace to LUCA. The [Fe] and [Fe-Fe] hydrogenases do not trace to LUCA but are specific to Archaea and bacteria,
respectively, where they have essential roles in the carbon and energy metabolism of hydrogenotrophic methanogens and
acetogens (see main text). Abbreviations: ACS, acetyl-CoA synthase; CODH, carbon monoxide dehydrogenase; Hyd,
hydrogenase; Nif, nitrogenase; CoFeS, corrinoid iron sulfur protein; SAM, S-adenosyl methionine; Ur-Archaea, archaeal
ancestor; Ur-bacteria, bacterial ancestor (‘Ur-" is a German prefix meaning ‘primordial’).
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Carbon-Metal Bonds in Ancient Metabolic Pathways

As described earlier, carbon-metal bonds are found in ancient metabolic pathways, linking Ho,
CO,, and N, to life in organisms that synthesize their cell mass from these gases. Although
it may appear that carbon-metal bonds are common in prokaryotes, few others have been
characterized in primary metabolism and both involve cofactors. One is the first organometallic
bond characterized, the classical cobalt—carbon bond in adenosylcobalamin, reported in 1961
by Dorothy Hodgkin [99], and the other is the most recent organometallic bond characterized,
an iron—carbon bond in the radical SAM reaction intermediate Q reported by the team of William
and Joan Broderick in 2018 [93,100] (Figure 1). Both of these cofactors are involved in generating
radicals for enzymes that catalyze reactions with a radical-dependent mechanism, reactions
that are particularly common in cofactor biosynthesis [101,102] and particularly prevalent in
LUCA [25].

The collection of carbon-metal bonds in Figure 1 is surely incomplete and others will likely
come to light. Since 1985, biologically generated carbon—-metal bonds were suggested for the
acetyl-CoA pathway [47] which is now known to be replete with carbon—nickel bonds [50].
Carbon-nickel bonds had also been discussed as possible reaction intermediates in the mecha-
nism of methyl coenzyme M reductase [103,104], but recent findings reveal a methyl radical
intermediate [104,105]. Carbon-metal bonds have also been proposed in O,-tolerant, Cu- and
Mo-dependent CO-oxidizing enzymes [106], which are unrelated to the anaerobic CODH
depicted in Figure 1, but the case is unresolved.

It appears that, in 4 billion years of evolution, biology has not evolved an alternative to the CODH/
ACS-dependent acetyl-CoA pathway for exergonic CO. fixation that lacks carbon-metal bonds;
neither has nature found an alternative to the carbon-metal bond in the active site of nitrogenase
to funnel N into metabolism. Nature has also so far not revealed an enzymatic reaction that will
extract electrons from H, without the participation of carbon—-metal bonds. Only three metals,
Fe, Co, and Ni, have been observed in organometallic bonds so far and include Ni-carboxyl,
Ni-carbonyl, Ni-methyl, and Ni-acetyl in CODH/ACS [49,50,55-59], Co-methyl in CoFeS
[51-54], Fe-carbide in nitrogenase [77-79,87], Fe-carbonyl, Fe-acyl, and Fe-nitrile in hydroge-
nases [87-91], Co-methylene in adenosylcobalamin [99], and Fe-methylene in the SAM interme-
diate Q [93,100]. In enzymes and in industry, the catalytic activity of Fe, Co, and Ni resides in
the ability of the unpaired electrons in their 3d orbitals to undergo back bonding and to forge
metastable bonds [48,107].

As microbiologists probe new environments, more carbon-metal bonds might be found. As one
possible example, newly characterized acetogens from a serpentinizing system called the Cedars
inhabit effluent that is saturated with H, [32]. The effluent has a strongly reducing midpoint
potential that can reach values of up to =900 mV, easily sufficient to reduce ferredoxin if the
right catalysts are available [32]. Although effectively drowning in H,, the bacteria appear to
lack known hydrogenases [32], raising interesting questions, such as whether they access elec-
trons from H, by mechanisms that do not require hydrogenases, or whether known hydrogenase
side activities of ferredoxin-dependent organometallic enzymes, such as nitrogenase [83] or
CODH [108], fill that catalytic void. Alternatively, it is possible that organisms living in environments
such as the Cedars have novel hydrogenases that, based on hydrogenases known so far, might
be expected to harbor carbon-metal bonds.

Although rare and ancient in biology, carbon-metal bonds are common in chemical industry [36,
77,107], they are always around us and we encounter them every day: imagine a life without steel.
Steel is iron containing ~0.1-5% carbon atoms (Figure 3) [109,110]. Carbon-metal bonds are
what gives steel greater hardness and tensile strength over iron alone; the more carbon steel

814  Trends in Biochemical Sciences, September 2019, Vol. 44, No. 9

Cell

REVIEWS



Figure 3. Carbon—-Metal Interactions in Steel. The diagram
depicts the position of a carbon atom (black) in a lattice of
iron (Fe) atoms (gray) in a subsection of a crystal structure
for a sample of steel containing a molar ratio of Fe to C atoms
of ~24:1. Redrawn after [109,120]. In contrast to Figure 1 (in
the main text), the lines in this figure do not indicate bonds, but
instead highlight the geometry of elemental iron atoms
surrounding an elemental carbon atom in martensite steel
[109,120].

.\

Q

contains, the harder and more brittle it becomes [109]. Many experiments investigating CO, re-
duction under hydrothermal conditions have been reported in which the catalysts investigated
had small effects, but the steel-walled reactors themselves appeared to be catalytic in the synthe-
sis of a small amount of reduced carbon compounds (reviewed in [110]). In light of the activities
associated with carbon-metal bonds and the biological activities of native metals [111-119]
(Box 1), the catalytic properties of steel would appear to have more in common with biology
than one might think.

Concluding Remarks and Future Perspectives

Carbon—-metal bonds in enzymes and cofactors are ancient, few in number, and crucially
positioned at the interface of metabolism and the environment; they have been and still are
required for the entrance of carbon, nitrogen, and hydrogen gases into metabolism. However,
unlike organic cofactors, thioesters, and FeS clusters found in ancient metabolism, organometal-
lic bonds are not universal among microbes, which leads to a variety of questions regarding
their mechanisms and evolution (see Outstanding Questions). Given their insuperably primordial
position in metabolism, bringing H,, CO,, and N, to life, carbon-metal bonds in physiology
might well be as old as it gets, a kind of biochemical bedrock.
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