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Harnessing energy as ion gradients across membranes is as universal as the genetic code. We
leverage new insights into anaerobe metabolism to propose geochemical origins that account
for the ubiquity of chemiosmotic coupling, and Na+/H+ transporters in particular. Natural proton
gradients acting across thin FeSwalls within alkaline hydrothermal vents could drive carbon assim-
ilation, leading to the emergence of protocells within vent pores. Protocell membranes that were
initially leakywould eventually become less permeable, forcing cells dependent on natural H+ gradi-
ents to pump Na+ ions. Our hypothesis accounts for the Na+/H+ promiscuity of bioenergetic
proteins, as well as the deep divergence between bacteria and archaea.
Introduction
The use of ion gradients over membranes for energy con-

servation, as in chemiosmotic coupling, is as universal as the

genetic code itself, yet its origins are obscure. Insofar as

phylogenetics can give any indication of the deepest branches

of a ‘‘tree of life,’’ autotrophic, chemiosmotic cells invariably

cluster at its base (Say and Fuchs, 2010; Stetter, 2006; Maden,

1995). Although there is little doubt that the last universal

common ancestor (LUCA) was chemiosmotic with a mem-

brane-bound ATP synthase (Mulkidjanian et al., 2007), how

proton and sodium pumping acrossmembranes arose has rarely

been addressed. The issue harbors several severe evolutionary

problems, but important clues to the early evolution of energy

conservation are emerging from biochemical studies of metha-

nogens and acetogens that live from the reduction of CO2, using

electrons from H2 (Fuchs, 2011; Kaster et al., 2011; Buckel and

Thauer, 2012).

Manymethanogens grow from themildly exergonic reaction of

4H2 + CO2 / CH4 + 2H2O. To do so, they make about 1 mol of

methane per 1.3 g of cells (Thauer et al., 2008). This means that

the flux of H2 andCO2 to CH4 andH2O that sustains cells is about

40 times greater, by mass, than the yield (the mass of cell mate-

rial formed). Similar values can be calculated for bacteria such as

E. coli, based on estimated rates of ATP synthesis per cell divi-

sion. Both methanogens and E. coli turn over �50–55 billion

ATP molecules per division (Thauer et al., 2008; Phillips and

Milo, 2009), 50–100 times each cell’s mass. Life is not so much

a reaction as a side reaction of the cell’s core bioenergetic

process. These figures are for modern cells with evolutionarily

refined enzymes. Before the advent of enzymes, flux through

life’s initial main energy-releasing reaction was, by necessity,

less specifically channeled toward cell material (or its building

blocks) than today. For any amount of RNA-like bases to form

spontaneously via prebiotic chemistry—a central pillar of the

RNA world concept (Joyce, 2002)—or to double in mass through

replication, the excess of waste product versus biomass must

have been closer to 40,000:1, orders of magnitude greater
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than the 40-fold excess of modern methanogens. For lack of

true specificity in its original catalysts, early biochemistry

required much more carbon and energy flux than modern cells.

Despite life’s almost boundless diversity, there are only two

ways that living systems conserve energy in the form of ATP:

(1) chemiosmotic coupling via membrane-integral ATP syn-

thases and (2) substrate-level phosphorylations (SLPs), in which

soluble enzymes phosphorylate ADP during catalysis of a highly

exergonic reaction. Today, all energy that biological systems use

is ultimately harnessed through chemiosmotic coupling across

membranes because all SLPs use substrates generated by

chemiosmotic organisms. But membrane bioenergetics requires

proteins capable of both generating and tapping a gradient.

These proteins include some of the most astonishing nanodevi-

ces known, notably the ATP synthase, an energy-conserving

rotary motor. The ATP synthase was a product of long selection

during the early phases of evolution, but like only 30 or so other

proteins, it is as universal as the ribosome, and it displays the

same deep phylogenetic split between archaea and bacteria

(Mulkidjanian et al., 2007). Hence, it was present in the last

common ancestor. This raises the first evolutionary chicken-

and-egg problem: protein synthesis consumes 75% of a cell’s

ATP budget (Harold, 1986), and the ATP pool is ultimately replen-

ished by proteins that harness chemiosmotic gradients. But if

energy conserved by proteins is needed tomake proteins, where

did the energy come from that gave rise to the first proteins?

Naturally reactive chemical environments can, in principle, cut

this Gordian knot. Shock and colleagues (Shock et al., 1998;

Shock and Canovas, 2010; Amend and McCollom, 2009) have

shown that sustained disequilibrium at submarine hydrothermal

vents interfacing with ocean water generates conditions that

thermodynamically favor the synthesis of life’s building blocks,

amino acids in particular, from H2, CO2, and NH4
+. Russell and

colleagues (Russell et al., 1993; Russell and Hall, 1997) have

argued that the process of serpentinization at alkaline hydro-

thermal vents (see Box 1) generates natural proton gradients of

the magnitude and orientation used by modern cells. Such vents
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Box 1. Serpentinization

Serpentinization is important in the context of biochemical origins

because it is the source of electrons for reducing CO2 in hydrothermal

systems. At the high pressures and moderately high temperatures of

the deep ocean crust, minerals with low SiO2 content such as olivine

react with water to form a hydroxylated mineral, serpentinite, and

10–20 mM concentrations of H2, dissolved in alkaline fluids (Sleep

et al., 2004). Proskurowski et al. (2008) write the serpentinization reac-

tion as:

6 ðMg1:5Fe0:5Þ
olivine

SiO4 + 7H2O/ 3Mg3Si2O5ðOHÞ4
serpentinite

+ Fe3O4

magnetite

+H2

Serpentinization occurs when rocks derived from the upper mantle

(rich in olivine) are exposed to ocean water, which percolates down

fractures several km to react with rocks beneath the sea floor. This

exothermic reaction, combined with geothermal heat, warms the

circulating fluid to �150�C, generating a buoyant alkaline (pH 9–11,

note magnesium hydroxide in the above equation) mineral-laden

hydrothermal fluid, originally sourced from the ocean, that rises up to

the sea floor and exhales at 70–90�C.
At Lost City, the exhalate precipitates into large spires (<60 m) of

microporous minerals consisting of calcium magnesium carbonate

(Kelley et al., 2001, 2005). The thin mineral walls thereof (100 nm to

5 mm in diameter) form osmotic barriers that separate warm H2-rich

alkaline fluids from cooler, more oxidized ocean waters (Kelley et al.,

2001, 2005). Reduced, warm, alkaline fluids percolate continually

through the labyrinths of micropores, sustaining thermal, redox, and

pH gradients within the vents. Secondary convection in the adjacent

ocean waters guarantees a steady supply of CO2 and other solutes

to the mound’s margins. At the interface with Fe2+-containing oceans

(Arndt and Nisbet, 2012), the hydrothermal mounds on the early Earth

would not have been carbonate spires as at Lost City today but would

have been rich in transition metal sulfides instead.
are stable over timescales of 30,000 years and more (Kelley

et al., 2002) and would have been common on the early Earth

(Arndt and Nisbet, 2012).

But the devil is in the details, and proton gradients harbor

their own specific problems when it comes to early energy

harnessing. Although modern membranes are relatively imper-

meable to protons and Na+, the first membranes were almost

certainly leaky to small ions, especially protons (Pohorille and

Deamer, 2009; Mulkidjanian et al., 2012). If we embrace the

chemical environment presented by alkaline hydrothermal vents,

small organic acids like acetate would have been abundant

(Shock and Canovas, 2010). By traversing the membrane in

protonated form, organic acids dissipate proton gradients, but

not Na+ gradients. For these reasons, prokaryotes that inhabit

such environments today tend to exhibit Na+ bioenergetics

(Buckel and Thauer, 2012). Yet neither serpentinization nor any

other currently known process on the early Earth would have

readily generated dynamic Na+ gradients. Thus, the alkaline

vent theory, although rich in stable sources of chemical energy,

might seem headed to a dead end when it comes to specific

mechanisms that would allow the early evolution of biological

energy harnessing.

But now, modern anaerobic autotrophic prokaryotes that live

fromH2 and CO2—acetogens andmethanogens—are beginning

to relinquish their bioenergetic secrets, and these fall into place

with alkaline vents in a way that could hardly be more unex-

pected. The newly discovered process of flavin-based electron

bifurcation (see Box 2) (Herrmann et al., 2008; Li et al., 2008; Kas-

ter et al., 2011; Buckel and Thauer, 2012; Schuchmann and

Müller, 2012) reveals how these cells reduce CO2 with electrons

from H2, even though the midpoint potential of H2 makes the

reaction look impossible. Electron bifurcation provides amecha-

nism for the synthesis of low potential (�–500mV) ferredoxins

capable of reducing CO2. This mechanism involves soluble

enzymes and Na+/H+ gradients over membranes, thereby

providing important insights into the possible chemistry of CO2

reduction before the advent of protein-based chemiosmotic

harnessing (Figure 1). It also returns reduced ferredoxin, long

thought to be one of the most ancient of all proteins because

of its FeS centers (Eck and Dayhoff, 1966), to the foreground

of thoughts on ancient biological energy conservation. In fact,

electron bifurcation reveals the FeS clusters of reduced ferre-

doxin to be a biological energy currency chemically simpler

and more ancient than ATP itself (Buckel and Thauer, 2012).

Here, we outline (1) how the energy required for the origin of life

is provided abundantly at alkaline hydrothermal vents, in a form

essentially identical to that used by modern cells; (2) how natural

proton gradients could drive abiotic electron flux from H2 to CO2

to generate organic molecules in a manner closely analogous to

modern anaerobes living in similar environments; and (3) why the

requirement for active pumping threatened a bioenergetic

‘‘crisis,’’ as membranes tightened off to protons. We propose

that this crisis was averted through the combination of H+ and

Na+ energetics, producing a bottleneck through which only cells

with promiscuous H+/Na+ membrane bioenergetics could pass.

These considerations potentially explain the universality of

chemiosmotic coupling, the early divergence of archaea and

bacteria, and the phylogeny of key bioenergetic proteins.
Biochemistry Descended from Alkaline Hydrothermal
Vents
A variety of geochemical settings for the origin of life have been

proposed (Baross and Hoffman, 1985; Wächtershäuser, 1988;

Russell et al., 1993), but there are compelling reasons to favor

alkaline hydrothermal vents as the most likely site of the transi-

tion from geochemistry to life. The two most important reasons

are their sustained far-from-equilibrium conditions and their

basic similarities with the carbon and energy metabolism of

autotrophic cells. Such conditions are found at modern alkaline

hydrothermal vents, such as the Lost City Hydrothermal Field,

which is the best known example of its kind (Kelley et al., 2001).

The origin of life required an environment that provided a high

enough energy (enthalpy) flux to maintain a low-entropy state

(Morowitz, 1968). The low-entropy state of living cells can only

be maintained if counterbalanced by an even larger decrease

in enthalpy, so the resultant change in free energy remains nega-

tive (DG = DH – TDS). Thus, life requires a continuous and high

input of energy. These considerations mitigate against many

settings for life’s origin, notably high-entropy, low-enthalpy

systems such as primordial soup (whether formed by lightning

strikes, UV radiation, or the delivery of organics from space),

as well as microcompartmentalized systems not continually
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replenished in chemically active precursors, such as ice or

pumice. Thermodynamic considerations do not rule out volcanic

vents (black smokers) a priori, but other factors make them less

likely than alkaline vents. Specifically, volcanic vents have

a much shorter life span than alkaline vents, in the order of

decades as opposed to >30,000 years for Lost City (Kelley

et al., 2002); their temperatures are much higher, above 250�C,
where carbon is stable as CO2 (Shock et al., 1998; Miller and

Bada, 1988), as opposed to the life-compatible range of

50–90�C for Lost City; and they are very acidic in pH, typically

pH �1. This is a value that modern cell contents never see, as

opposed to pH �9–10 at Lost City, a value not far from that of

an active mitochondrial matrix, pH �8 or above.

Far-from-equilibrium conditions in alkaline hydrothermal vents

satisfy thermodynamic constraints and provide continuously

reactive chemical environments. Alkaline vents, currently typified

by Lost City, are not volcanic but are formed by the geological

process of serpentinization (Box 1), which is the source of abun-

dantH2 in their hydrothermal effluents (Proskurowski et al., 2008).

Thermodynamic calculations show that the synthesis of cell

biomass, including amino acids, bases, sugars, and lipids, from

H2, CO2, and trace NH4
+ is exothermic under alkaline hydro-

thermal conditions (pH 9, 50–125�C, H2 concentrations in the

mM range, etc); the reactions provide, in principle, both the

reduced carbon and energy needed for life (Amend and McCol-

lom, 2009). These calculations are based on geochemically

plausible conditions, measurable in alkaline hydrothermal vents

today and reasonable for early Earth settings. They are also

supported by recent experiments showing that sugars, bases,

carboxylic acids, and amino acids can be formed from the simple

C1 compound formamide by using mineral catalysts under alka-

line hydrothermal conditions (Saladino et al., 2012).

The second reason to favor alkaline vents as reactors for life is

the striking overall similarity between the chemistry at alkaline

hydrothermal vents on the one hand and the core carbon and

energy metabolism of modern methanogens and acetogens on

the other. No other geochemical setting comes as close to

bridging the gap between inorganic and biological chemistry

(Martin and Russell, 2007). At the time when life started, atmo-

spheric CO2 concentrations were probably up to 1,000-fold

above present levels (i.e., 0.1–1 bar; Zahnle et al., 2007), and

molecular oxygen was absent, giving a very different ocean

chemistry from today. High CO2 made the oceans mildly acidic

(pH 5.5–6) compared with pH 8 today, which, in the absence of

O2, allowed reduced transition metals, most significantly Fe2+

and Ni2+, to accumulate in the early oceans (Arndt and Nisbet,

2012). These metals, exhaled from volcanic vents (possibly

nearby), gave rise to mineral precipitates at alkaline vents, the

chimneys of which likely constituted a mixture of silicates, clays,

carbonates, and sulfides (Martin et al., 2008). At a Lost-City-type

vent in an early-Earth setting, this chemistry delivers catalytic

Fe(Ni)S minerals laced with Mo, W, and other transition metals

from the alkaline fluids.

Alkaline vents prefigure membrane bioenergetics, as they

provide natural proton gradients across thin inorganic walls, as

well as redox gradients, with reduced gases (notably H2) on

the inside and oxidized gases (notably CO2) on the outside (Rus-

sell and Hall, 1997). An ocean pH of 5.5–6 and hydrothermal fluid
1408 Cell 151, December 21, 2012 ª2012 Elsevier Inc.
pH of 9–11 give a proton gradient of �3–5 pH units, which is

equivalent to a proton-motive force of 150–300mV, with the

outside acidic, positively charged, and oxidized relative to the

inside. This gradient is identical in polarity and is remarkably

similar in range of both pH and potential to modern autotrophic

cells. In our view—and given the near universality of proton

gradients across life—this is no coincidence (Lane et al., 2010).

This overall geochemical setting not only has broad and

general similarity to the chemical and energetic processes

of life, but it also has specific and detailed similarity—in our

view, homology—to carbon and energy metabolism in auto-

trophs that live from reducing CO2 with electrons from H2—ace-

togens and methanogens. This immediately raises an important

question of fundamental nature: how can CO2 be reduced by

H2, given that the reduction potential of the CO2 /HCOOH

couple (E0
0 = –430mV) is below that of the 2H+/H2 couple

(E0
0 = –414mV) and that the formate/formaldehyde couple is

even lower (E0
0 = –580mV)? This difficulty is hardly trivial, and it

prompted Wächtershäuser (1988) to surmise that it was impos-

sible for life to have started fromH2 and CO2 for that very reason.

But methanogens and acetogens make a living from the reduc-

tion of CO2 with H2. Only now are microbiologists beginning

to understand what tricks microbes use to make the ‘‘impos-

sible’’ possible. The key is a newly recognized process called

flavin-based electron bifurcation (Herrmann et al., 2008; Li

et al., 2008; Kaster et al., 2011; Buckel and Thauer, 2012). It is

elegant, widespread, and provides anaerobic autotrophs with

a means to synthesize the key to their CO2 fixation—reduced

low-potential ferredoxins.

Electron Bifurcation and Ion Gradients
Among anaerobic autotrophs (cells that satisfy their carbon

needs from CO2 alone), only two kinds of microbes are known

that also harness energy by reducing CO2 with electrons from

H2: acetogens and methanogens. When growing on H2, aceto-

gens generate their ATP via chemiosmotic coupling, using the

reaction

4H2 + 2HCO�
3 +H+/CH3COO� + 2H2O

with DGo0 = –104.6 kJ$mol�1 (Fuchs, 1986). All acetogens char-

acterized so far are eubacteria, belonging to the clostridias.

Methanogens also generate their ATP via chemiosmotic

coupling using the reaction

4H2 +CO2/CH4 + 2H2O

with DGo0 = –131 kJ$mol�1 (Thauer et al., 2008). A geochemical

variant of the methanogenic reaction occurs in the Earth’s crust

at Lost City, the effluent of which contains about 1 mMmethane

of abiotic origin (Proskurowski et al., 2008; Lang et al., 2010),

a hitherto unique example of geochemical and biochemical

homology. All known methanogens are archaebacteria.

Acetogens and methanogens are strict anaerobes; their carbon

assimilation entails the acetyl-CoA pathway, a linear pathway of

CO2 fixation that—similar to the situation for hydrothermal

vent conditions mentioned above (Amend and McCollom,

2009)—releases energy while generating cell mass rather than



Box 2. Flavin-Based Electron Bifurcation

The reduction of CO2 by H2 to methane or acetate is exergonic overall

under a wide range of conditions but requires overcoming a thermody-

namic barrier (Maden, 2000). This is achieved by reducing low-poten-

tial ferredoxins with the help of flavin-based electron bifurcation

(Buckel and Thauer, 2012).

Flavin-based electron bifurcation couples the endergonic reduction of

a low-potential ferredoxin by using electrons derived from H2 to the

exergonic reduction of a high-potential acceptor. In methanogenesis,

the high-potential acceptor is the heterodisulfide CoM-S-S-CoB (Kas-

ter et al., 2011); in acetogenesis, the high-potential acceptor is NAD+

(Poehlein et al., 2012; Schuchmann and Müller, 2012). The energy of

the exergonic reaction is conserved in the currency of reduced low-

potential ferredoxin, which, in contrast to the starting reductant H2, is

capable of reducing CO2. In both acetogens and methanogens, CO2

is reduced stepwise to a methyl group. In methanogens lacking cyto-

chromes, the coupling site is a methyltransferase (Mtr) whose reaction

is sufficiently exergonic to drive the extrusion of ions (Na+ or H+) across

the membrane, conserving energy as chemiosmotic potential (Thauer

et al., 2008). In Acetobacterium woodii, which lacks cytochromes,

the coupling site of Na+ pumping resides in Rnf, which reduces NAD

with electrons from low-potential ferredoxin (Poehlein et al., 2012). In

both groups, CO2 is the terminal electron acceptor, being released

as methane or the methyl moiety of acetate (CH3COO�).
The membrane potential generated is used for ATP synthesis (via an

ATP synthase) and carbon assimilation. Methanogens can reduce

ferredoxin with electrons from H2 via the energy-converting hydroge-

nase (Ech), a membrane protein that harnesses the ion gradient gener-

ated bymethanogenesis. When ferredoxin is reduced by Ech, a portion

of the ion gradient is spent (Fuchs, 2011; Figure 2). In acetogenesis,

acetyl-CoA synthesis consumes and generates one ATP, so there is

no net ATP gain, but ATP synthesized via Na+ pumping comes into

play, permitting net carbon assimilation as acetyl-CoA.

The acetyl-CoA pathway is regarded as the most ancient of known

CO2 fixation pathways (Fuchs, 2011; Ferry, 2010) and is replete in

FeS and Fe(Ni)S proteins (Bender et al., 2011). The similarities and

differences in its manifestations in acetogens and methanogens

suggest that the basic chemistry of transition metal-catalyzed methyl

synthesis is more ancient than the nonhomologous enzymes of these

pathways, which arose in the world of genes and proteins (Martin,

2012). Abiogenic methane and formate synthesis at Lost City would

attest to the feasibility and antiquity of geochemical methyl synthesis

(Proskurowski et al., 2008). We posit that flavin-based electron bifurca-

tion arose in vents as membranes began tightening to Na+ and H+,

independently in acetogens and methanogens, albeit in both cases

drawing on a similar subset of homologous proteins, notably CO dehy-

drogenase, acetyl-CoA synthase, ferredoxin, and soluble hydroge-

nases (see Figure 2).
requiring energy input. Even to the level of the ‘‘energy-rich’’ thio-

ester, the reaction

2CO2 + 4H2 +CoASH/CH3COSCoA + 3H2O

is exergonic with an estimated of DGo0 = –59.2 kJ/mol (Fuchs,

2011).

Among acetogens and methanogens, the energetically

simplest and arguably most ancient (Martin, 2012) species have

a single ion coupling site and lack quinones and cytochromes.
They reduce CO2 by using a low-potential ferredoxin via flavin-

based electron bifurcation (see Box 2). The key point is that

electron flux to methane and acetate is used purely to generate

membrane potential, which is harnessed for both carbon

assimilation and ATP synthesis via the acetyl CoA pathway. As

alkaline vents alreadypossess iongradients across thin inorganic

walls, methanogenesis and acetogenesis in fact reconstitute

what alkaline vents provide for free. Could a natural proton-

motive force be tapped abiotically to drive carbon flux toward

organic synthesis in amanner analogous to acetogens ormetha-

nogens?

The pH-dependent midpoint reduction potential of many

ferredoxins offers clues as to how CO2 might be reduced by

H2. The reduction potential (Eh) falls with increasing pH (Corrado

et al., 1996) by �60mV per pH unit, according to the Nernst

equation. This means that ferredoxin is at its most reducing

under alkaline conditions and is itself most easily reduced under

acidic conditions. Ferredoxins contain FeS clusters that are

similar in structure to FeS minerals likely found in early alkaline

vents, notably mackinawite and greigite (Russell and Martin,

2004). The reduction potential of FeS proteins depends in

part on the protonation of amino acid residues as well as

sulfides in the FeS clusters themselves (Chen et al., 2002).

Less is known about the reduction potential of FeS minerals,

but the first FeS mineral to precipitate, disordered mackinawite,

protonates on the surface sulfide residues with an isoelectric

point of pH 7.5 (Wolthers et al., 2005). These protonations

and deprotonations are quantitatively important, as disordered

mackinawite has a high surface area of about 350 m2 g�1, with

a total reactive-site density of 4.0 sites nm�2 (Wolthers et al.,

2005). The Eh of freshly precipitated mackinawite at pH 7.5

is �–300mV (Chaves et al., 2011). Given these properties, it is

plausible that the reduction potential of disordered mackinawite

could fall under alkaline conditions to the point that it could

reduce CO2 to CO (E0
0 = –520mV), HCOOH (E0

0 = –430mV),

or formaldehyde (HCOOH + 2H+ + 2e� 4 HCHO + H2O,

E0
0 = –580mV).

Thus, like ferredoxin, FeS minerals could facilitate the reduc-

tion of CO2 by H2 under natural proton gradients (Figure 1).

The reduction potentials of H2 and CO2 also vary with pH; H2 is

most reducing in alkaline conditions, and CO2 is most easily

reduced in acidic conditions. Because CO2 is replenished in

the acidic ocean phase as CO2 or bicarbonate (pH 5.5, high

reduction potential) and H2 is replenished in the alkaline hydro-

thermal phase (pH 9, low reduction potential), there should be

a transfer of electrons across thin semiconducting FeS walls

from H2 to CO2, lowering the thermodynamic barrier, and so

driving organic carbon assimilation in vents. Such a reduction

is made possible by the fact that this system is naturally com-

partmentalized, with different reduction potentials acting on

opposite sides of thin, semiconducting FeS walls.

A second possible factor in the reduction of CO2 to CO,

formate, or formaldehyde might be Mo4+ (as a dithiolene

supplied in alkaline hydrothermal solutions). This can be oxidized

via a two-electron reaction to Mo6+ (Nitschke and Russell, 2009).

The transient Mo5+ intermediate is strongly reducing, with an Eh

of –355mV, and the reduction potential of the Mo5+/Mo6+ couple

is pH dependent in proteins falling below –600mV at pH 11
Cell 151, December 21, 2012 ª2012 Elsevier Inc. 1409



Figure 1. Possible Stages in Early Bioenergetic Evolution
(A) Fe2+-dependent CO2 reduction by H2 and organic synthesis. Critical energy
currencies are Fe2+, reduced FeS minerals similar to the catalytic FeS clusters
in ferredoxin (Fd�), thioesters, and acyl phosphates. A continuous flux of �pH
9 hydrothermal effluent is indicated, as are positively and negatively charged
compartments. For visual clarity, CO2 reduction is not shown associated with
the inorganic wall (see text).
(B) From the thermodynamic standpoint (Amend and McCollom, 2009), the
energetic configuration outlined in (A) could support the origin of genes,
proteins, and a proto-membrane. So long as methyl moieties are provided
continuously (via CO2 reduction at the vent or serpentinization), net carbon and
energy gain via acetyl thioesters is possible (seeMartin and Russell, 2007). The
ion-gradient-harnessing ATP synthase is universal, but no ion pumping
machinery is, suggesting that the ability to harness the proton gradient at an
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(Barber and Siegel, 1982), which is low enough to reduce CO2 to

formate or formaldehyde.

How these factors might act to reduce CO2 geochemically is

still speculation, but three points are worth making. First, Lost

City contains methane of geochemical origin (Proskurowski

et al., 2008; Lang et al., 2010); somehow CO2 is being geochem-

ically reduced. Second, the enzymes involved in the reduction of

CO2 in acetogens and methanogens are replete with FeS and

Fe(Ni)S centers (Bender et al., 2011) and typically require pterin

cofactors containing Mo or W (Nitschke and Russell, 2009). The

transitionmetals themselves are thecritical catalysts that transfer

electrons; enzymes speed up these transfers and modulate

reduction potential, but the transition metal sulfide cofactors,

not the amino acid side chain moieties, provide the catalysis.

Third, CO2 ismost readily reduced twoelectrons at a time; hence,

the 1e� reductions of the Fe2+/Fe3+ couple in FeS minerals must

be coordinated with the 2e� reductions of the CO2/HCOO�

couple. The Mo4+/Mo6+ couple might facilitate this switch.

It is possible that the origin of life depended upon organic syn-

theses—for example, chemically accessible methyl groups—

that might have that required high pressure and moderately

high temperature conditions provided in the crust during serpen-

tinization; the 1mM abiogenic methane in Lost City attests to the

carbon-reducing abilities of that geochemical process. It is,

however, also possible that life-relevant CO2 reduction occurred

almost solely at the vent ocean interface. There are no reports

of laboratory experiments to indicate that CO2 reduction with

Fe2+ is facile, but Heinen and Lauwers (1996) showed that it is

possible. We suggest that the critical factor that could potentially

modulate midpoint potentials of mineral reductants between

–300 and –600mV required to reduce CO2 is pH. Natural proton

gradients across inorganic walls containing FeS, Fe(Ni)S, and

MoS2 could theoretically drive the reduction of CO2 by H2 to

organic carbon by lowering the thermodynamic barrier to their

reaction, thereby driving the thermodynamically favorable accu-

mulation of biologically relevant molecules, including amino

acids, bases, sugars and lipids. Once formed, organics can be

concentrated many thousands-fold by temperature gradients

(thermophoresis) within the microporous labyrinth, facilitating

polymerization of amino acids and nucleotides, precipitation of

lipids, and, ultimately, cycles of replication (Baaske et al.,

2007; Mast and Braun, 2010).

Thus, one can, in principle, envisage the origins of genes,

proteins, and natural selection in alkaline vent systems, but this

is not our current focus; salient aspects are discussed elsewhere

(Martin and Russell, 2003, 2007; Koonin and Martin, 2005; Bran-

ciamore et al., 2009). The significant point here is that natural

proton gradients can, in principle, drive the beginnings of an
alkaline hydrothermal vent is older than any biochemical machinery that could
generate a gradient with a chemistry specified by genes. Continuous hydro-
thermal flux maintains pH 9 on the inside of the vent-ocean interface.
(C) Early membranes would not have been tight to protons, but a H+/Na+

antiporter could transduce a free proton gradient into a Na+ gradient, tight-
ening coupling. This would not require a mutational shift in substrate speci-
ficity, as the methanogen ATPase is promiscuous for H+ and Na+ (Schlegel
et al., 2012). The H+/Na+ antiporter, present in modern methanogens (Surı́n
et al., 2007) and acetogens (V. Müller, personal communication), converts H+

into Na+ currency with essentially no energetic cost.



anabolic biochemistry, eventually forming protocells within the

vent pores. By protocells, we mean the organic contents occu-

pying inorganic compartments, lined partially or completely

with leaky organic membranes. In early stages, we envisage

networks of inorganic compartments lined distally to the ocean

with leaky organic membranes but proximally contiguous with

vent effluent. The first organic membranes were presumably

composed of spontaneously phase-separated alkanes, hydro-

phobic amino acids and peptides, fatty acids, and other amphi-

philes. At a later protocellular stage, membrane lipids and

proteins became genetically encoded, and cell-like structures

were beginning to seal off within vent pores. The deep differ-

ences between archaebacterial and eubacterial membranes

imply divergence even within the vents.

At all stages, protocells were using both organic membranes

and inorganic walls to help harness the geochemical chemios-

motic potential. But to escape from the vents as independent

free-living cells requires a switch from relying on natural proton

gradients to forming true cells capable of actively generating

ion gradients on their own. The problems involved are counterin-

tuitive and suggest further intriguing parallels with methanogens

and acetogens.

The Origin of Active Ion Pumping
In modern cells, membrane bioenergetics depends on the

impermeability of membranes to H+ or Na+. In vents, neither

thin inorganic walls nor the first leaky organic membranes could

retain an electrochemical potential for long. Nonetheless, and

critically, the percolation of alkaline fluids and ocean water

through labyrinthine microcompartments continually juxtaposes

solutions of different pH and reduction potential, maintaining

proton and redox gradients despite the leakiness of the walls

and membranes.

In this setting, protocells with lower membrane permeability

should have prospered. As organic membranes became less

permeable to small ions, proton flow would by necessity be

funneled increasingly through membrane proteins such as Ech

(see Box 2), enhancing the reduction of early ferredoxins and

speeding carbon assimilation. At a later stage, the ATP synthase

would also require relatively impermeable—well coupled—

organic membranes to function. Although the soluble ATPase

and membrane domains of the ATP synthase are homologous

to bacterial RNA helicase and translocase enzymes, respec-

tively, which may have played an earlier role (Mulkidjanian

et al., 2007), the universality of chemiosmotic ATP synthesis in

archaebacteria and eubacteria, combined with the high energy

requirements of early cells, strongly suggests that the ATP

synthase arose in vents as a product of natural selection acting

on genes and proteins, along with other nanomachines such

as ribosomes. Crucially, however, the presence of natural proton

gradients across organic membranes means that the ATP syn-

thase could function long before the origin of active ion-pumping

systems that work to generate ion gradients (Figure 2).

While improving coupling, decreasing membrane permeability

led to a precarious energy crisis. Theproblem is that a continuous

flow of protons through proteins such as Ech and the ATP

synthase can only be sustained if the protons entering the cell

are removed again. Otherwise, the system swiftly equilibrates,
dissipating the proton-motive force. With a discontinuous or

semipermeable membrane, this is no problem; the flux of

protons from the ocean is neutralized by the flux of OH� ions

in hydrothermal fluids to maintain the proton-motive force

(Figure 1). As soon as the membrane becomes impermeable,

however, sealing off as a cell-like vesicle, the hydrothermal flux

ceases, and protons accumulate within, equilibrating the inside

and outside, dissipating the proton-motive force. Unless the pro-

tocell can pump these protons out again, regenerating the

proton gradient actively with the help of another energy source,

it will equilibrate with the environment. Thus, protocells with

permeable membranes should survive perfectly well in vents

because they can take advantage of the natural proton-motive

force; but cells with genetically encoded membranes that have

become impermeable to protons should die unless they can

find a way to eliminate protons accumulating within by pumping

them out again to regenerate the proton gradient. Active pump-

ing is of course a prerequisite for leaving the vents at all but

harbors serious problems of its own.

Either the cell must ‘‘invent’’ a proton pump as soon as the

membrane becomes impermeable, or else it must evolve one

while the membrane is still leaky to protons. ‘‘Immediate inven-

tion’’ is obviously unlikely. But if a proton pump were to evolve

before the membrane had become impermeable to protons,

then protons would need to be pumped out against a 1,000-

fold natural gradient, which quickly dissipates back through

the membrane anyway (hardly an option). Assuming hydro-

thermal fluids were alkaline (RpH 9), the internal proton concen-

tration would be %1 nM. Machinery pumping protons against

that gradient would need to be extremely sophisticated while

offering no immediate advantage.

What is worse, in energetic terms, pumping is very costly.

Modern methanogens produce 40 times more methane than

biomass just to generate ion gradients. When equivalent

gradients are provided for free by the vents, protocells are

bathed in an abundant supply of energy. The crisis comes

when available redox energy has to be diverted from reducing

CO2 (carbon metabolism) toward pumping (energy metabolism).

The transition to active pumping drastically reduces the energy

available for synthesizing biomass. Assuming that the earliest

proton pumps were energetically inefficient (as they had yet to

be evolutionarily refined) and that the membranes they were

acting over were still permeable to protons, the energetic costs

must have been colossal, the evolutionary challenges severe,

and the advantages very limited—merely the regeneration of

a proton gradient that already exists in vents. Thus, protocells

with membranes that have become impermeable to protons

face a seemingly insurmountable bioenergetic crisis. Such

protocells would surely have been outcompeted in vents by

protocells with more proton-permeable membranes that never

relinquished their energetic dependence on natural proton

gradients, but such dependent entities are energetically tied to

the vents and ultimately died with them. So how did these first

evolving systems escape the energy crisis imparted by proton-

tight membranes?

Taking our cue once again from the biochemistry of methano-

gens and acetogens, we propose that the answer lies in the

differential permeability of membranes to small ions. Primordial
Cell 151, December 21, 2012 ª2012 Elsevier Inc. 1411



Figure 2. Possible Divergence of Acetyl CoA Pathway in Methanogens and Acetogens
(A–F) Methanogens (A–C) and acetogens (D–F) share several proteins of carbon and energy metabolism (ferredoxin, acetyl CoA synthase, carbon monoxide
dehydrogenase, soluble hydrogenases, and the ATPase), but their enzymes of methyl synthesis are unrelated, suggesting that geochemical methyl synthesis

(legend continued on next page)
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membranes in vents would have become impermeable to Na+

before they became impermeable to protons. Even today, lipo-

somes composed of bacterial lipids differ in their permeability

to Na+ and H+, especially at high temperatures (Na+ and H+

permeability increases by one to two orders of magnitude

between 20 and 80�C; van de Vossenberg et al., 1995). The

permeability coefficient for protons ranges from 10�10 to 10�9

cm s�1. In contrast, Na+ permeability is much lower, in the order

of 10�13 to 10�11 cm s�1 (van de Vossenberg et al., 1995). Thus,

modern bacterial membranes are two to three orders of magni-

tude more permeable to H+ than to Na+, and this was probably

more marked as the earliest membranes were first becoming

impermeable to Na+. In a membrane that is impermeable to

Na+, but not to H+, a continuous flow of protons could power

a Na+ efflux via a simple Na+/H+ antiporter, as exists in many

cells, including modern methanogens (Surı́n et al., 2007). The

passage of protons through such an antiporter would not dissi-

pate the proton-motive force, as hydrothermal flux would

continue to supply OH� ions that neutralized protons inside. A

proton-driven antiporter in a semipermeable membrane would

therefore transduce a geochemical H+ gradient into a biochem-

ical Na+ gradient, offering immediate benefits in terms of

improved coupling.

This process is energetically free for protocells that harness it,

as it is powered by geothermal proton gradients. As a bonus,

a simple Na+/H+ antiporter could also explain Na+ balance (and

Na+/K+ ratio) in modern cells, which usually have low

(�10 mM) intracellular [Na+] relative to the oceans (�475 mM).

If this circumstance is a physiological fossil of early metabolism

(Mulkidjanian et al., 2012), it could be readily explained by the

action of an antiporter driven by natural proton gradients, which

could optimize intracellular ion balance for enzyme function.

Thus, a simple Na+/H+ antiporter in protocells within vent

pores would produce Na+ gradients. The great advantage of

an H+-coupled Na+ pump is that the proteins required for Na+

bioenergetics could adapt to the larger ion before membranes

tightened off to protons, at zero energetic cost. Natural proton

gradients could therefore give rise to Na+-coupled energetics

from H+-coupled energetics. Protocells that remained strictly

proton dependent would fall victim to the energy crisis induced

by proton-tight membranes. In contrast, cells that had already

evolved H+/Na+ energetics would thrive with proton-tight

membranes, as the Na+ circuit already existed.
(Proskurowski et al., 2008; Lang et al., 2010) predated the advent of genes and p
lineages after the origin of the ATP synthase but before the origin of free living c
which consumes part of the membrane potential to provide reduced ferredoxin
presence of a geochemical proton gradient, Ech would be an inexhaustible sou
a path in which Fd�, rather than ATP, becomes the central energy currency in car
(Kaster et al., 2011), electron bifurcation at heterodisulfide reductase (Hdr) is the
exergonic reduction of the heterodisulfide CoB-S-S-CoM, which is reoxidized at t
is sufficiently exergonic to pump ions (Thauer et al., 2008) and is the only couplin
marburgensis (Kaster et al., 2011), whose energy metabolism is shown in (C). Net c
of the Na+ gradient by Ech (not shown) for Fd reduction, leading to net acetyl-CoA
serves as the reduced end product of energy metabolism. The trimeric, bifurcating
of Fd�, with the exergonic reaction to drive Fd reduction at bifurcation being NAD
methanogens) for redox balance. A Na+-utilizing ATPase supports methyl synthe
Rnf generates a Na+ gradient during the synthesis of acetate from H2 and CO2

acetogen that lacks cytochromes. Net carbon assimilation requires investing a
bifurcating enzymes (Buckel and Thauer, 2012) central to carbon and energy m
(Poehlein et al., 2012), respectively, are indicated in red.
The promiscuous behavior of ion channels in cells living from

the H2/CO2 couple today might be relics of this solution to the

energy crisis. Methanogens such asMethanothermobacter ther-

mautotrophicus rely on both H+ and Na+ gradients, modulated

by an H+/Na+ antiporter (Surı́n et al., 2007). In Methanosarcina

acetivorans, the ATP synthase has an equal affinity for Na+ and

H+, translocated concurrently to drive ATP synthesis (Schlegel

et al., 2012). This promiscuity could also explain why Na+-motive

and H+-motive ATP synthases are interleaved in phylogenetic

trees (Mulkidjanian et al., 2008), making it difficult to infer

whether Na+ or H+-coupled energetics arose first (Lane et al.,

2010). Other bioenergetically crucial membrane proteins in

methanogens and acetogens, notably Ech and Rnf, are also

apparently promiscuous for Na+ and H+ (Buckel and Thauer,

2012). Even complex I (NADH dehydrogenase) displays

intriguing Na+/H+ promiscuity (Batista et al., 2012).

The simplest mechanism for the origin of ion pumping is to

reverse processes that already existed. Rather than reducing

ferredoxin by using membrane potential via proteins such as

Ech, cells could drive the extrusion of ions by ferredoxin oxida-

tion. Acetobacterium woodii, for example, couples a single Na+

pump (Rnf), powered by Fd2– oxidation, to ATP synthesis via

a Na+/H+-motive ATP synthase (Poehlein et al., 2012). Reduced

ferredoxin is now generated via electron bifurcation, as dis-

cussed in Box 2, requisitioning enzymes (FeNi hydrogenases)

and cofactors (NAD+) that already existed (Figure 2). Methano-

gens call on several of the same players (Figure 2) and likewise

employ electron bifurcation for ferredoxin reduction. The primary

sodium pump in this case, the methyl transferase (Mtr) again

contains subunits related to antiporters (Harms et al., 1995).

When actively pumping, acetogens and methanogens are ener-

getically at the limits of feasibility (albeit have doubling times

measured in minutes or hours), yet they offer the simplest solu-

tion to the pumping problem by using single coupling sites

already involved in Na+/H+ circuits, minimizing the need for de

novo invention.

Only when cells mastered Na+ pumping with an energetic effi-

ciency stipulated by thermodynamics and only when they were

able to generate their ion gradient with a chemistry fully specified

by genes would they have been free to escape from the vents.

Two separate escapes would readily explain the early diver-

gence of archaea and bacteria, with their very different cell

membranes and walls (Martin and Russell, 2003; Koonin and
roteins and further suggesting a divergence of eubacterial and archaebacterial
ells (see text). In methanogens (A), the energy-conserving hydrogenase (Ech),
for carbon metabolism, may have played an early bioenergetic role. In the

rce of reduced ferredoxin from H2, channeling the methanogen lineage down
bon and energy metabolism. (B) In modern methanogens lacking cytochromes
main source of Fd�. The endergonic reduction of ferredoxin is coupled to the
he methane synthesis step. The methyl transferase (Mtr) reaction in this branch
g site (with no other ancestral candidate for that role) in Methanothermobacter
arbon assimilation in methanogens that lack cytochromes consumes a portion
accumulation (Kaster et al., 2011). (D) In acetogens, the methyl group in acetate
hydrogenase (Hyd) (Schuchmann andMüller, 2012) becomes the main source

+ reduction, requiring NADH-oxidizing steps in methyl synthesis (a difference to
sis, allowing net acetyl-CoA accumulation. (E) Fd-dependent Na+-pumping via
. (F) Energy metabolism of Acetobacterium woodii (Poehlein et al., 2012), an
portion of ATP-synthase-derived ATP to acetyl CoA synthesis. The electron
etabolism in methanogens and acetogens, Hdr (Kaster et al., 2011) and Hyd
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Martin, 2005); two separate solutions to the pumping paradox

could also explain the deep differences between acetogenesis

and methanogenesis, which are chemically similar pathways

that nonetheless have little biochemistry in common (Martin

and Russell, 2007).

Remarkably, nearly 4 billion years of innovations never led to

the replacement of the universal ATP synthase by a better

protein, nor did cells ever fundamentally alter the primordial

electrochemical basis of membrane bioenergetics. Bacterial

respiratory complex I, for example, is homologous to Ech, with

the addition of quinone-binding domains. Both Ech and complex

I contain subunits that are homologous to the Na+/H+ antiporter

and to soluble FeNi hydrogenases of the type discussed here

(Marreiros et al., 2012). A reasonable interpretation is that

complex I arose through the addition of quinone-binding

domains to Ech (Marreiros et al., 2012; Hedderich, 2004), which

is consistent with the fact that Ech is widespread among eubac-

teria as well as among archaebacteria. Independent origins of

both quinone (White, 2004) and heme (Storbeck et al., 2010)

biosynthesis in archaebacteria and eubacteria support the

view that more elaborate respiratory chains containing both

quinones and cytochromes evolved after Ech and ferredoxin-

based membrane bioenergetics. Many respiratory proteins are

assembled from a redox protein ‘‘construction kit’’ (Baymann

et al., 2003) and are easily passed around by lateral gene trans-

fer; the early acquisition of quinones and cytochromes may even

have enabled the early radiation of eubacteria and archaebacte-

ria. Both groups evolved access to the hundreds of redox

couples known to support life via membrane bioenergetics.

Even electron bifurcation arose a second time, involving

quinones and cytochrome b complexes in the respiratory Q

cycle (Mitchell, 1975). In light of such diversity, acetogens and

methanogens that lack quinones and cytochromes stand out

more than ever as simply construed strict anaerobes living

from gases (H2, CO2, N2, NH3, and H2S) present in early vents

and with cofactor requirements comprising phosphate and

a few metals.

Conclusions
Dependence on membrane bioenergetics is as universal as the

genetic code. As the mechanisms of energy conservation in

methanogens and acetogens have come into focus in recent

years, so too have the contours of a possible path from rocks

and water to biological ion pumping and energy conservation

via the rotor-stator ATP synthase. The great sophistication of

modern chemiosmotic coupling, combined with the difficulties

involved in tightening off early membranes to small ions, espe-

cially protons, has led to much skepticism that ion gradients

over membranes could have helped meet the energy require-

ments for the origin of life. Yet we have described here how

natural proton gradients in alkaline hydrothermal vents could

have supported organic carbon flux through the pH-dependent

reduction potential of Fe(Ni)S minerals, as happens in modern

FeS proteins, notably ferredoxin. The tightening of early

membranes to small ions appears to have forced the combina-

tion of H+ and Na+ energetics, as seen in many of the cells living

in similar environments today, because protocells that remained

dependent on proton gradients alone could not make transition
1414 Cell 151, December 21, 2012 ª2012 Elsevier Inc.
to the free-living state. Finally, the origins of Na+ pumping

required no mechanistically groundbreaking genetic innova-

tions, just a protein, an antiporter that transduced a geochemical

gradient (H+) into a biochemical one (Na+). The high energy

demands for early life, the membrane bioenergetics of cells

today, the antiquity of transition metal catalysis, and the sources

of power that were abundantly available on the early Earth

together suggest that the processes of biochemical energy

conservation and geological energy dissipation at alkaline

hydrothermal vents are homologous.
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