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Eukaryotes possess an elaborate endomembrane system with endoplas-
mic reticulum, nucleus, Golgi, lysosomes, peroxisomes, autophago-
somes, and dynamic vesicle traffic. Theories addressing the evolutionary
origin of eukaryotic endomembranes have overlooked the outer membrane
vesicles (OMVs) that bacteria, archaea, and mitochondria secrete into their sur-
roundings. We propose that the eukaryotic endomembrane system originated
from bacterial OMVs released by the mitochondrial ancestor within the cytosol of
its archaeal host at eukaryote origin. Confined within the host's cytosol, OMVs
accumulated naturally, fusing either with each other or with the host's plasma
membrane. This matched the host's archaeal secretory pathway for cotransla-
tional protein insertion with outward bound mitochondrial-derived vesicles con-
sisting of bacterial lipids, forging a primordial, secretory endoplasmic
reticulum as the cornerstone of the eukaryotic endomembrane system.

Eukaryogenesis: A Matter of Compartmentalisation
Among the many traits that distinguish eukaryotic from prokaryotic cells, none is more conspic-
uous or significant than the eukaryotic endomembrane system (see Glossary). Like other
eukaryotic-specific traits, such as mitosis and sex, its evolutionary origin remains obscure. The
compartments of the endomembrane system are present throughout the major eukaryotic
groups, as are the proteins that are specific to them [1]. Hence both were present in the
eukaryote common ancestor [2], for which reason thoughts on the origin of the endomembrane
system are linked to thoughts on the origin of eukaryotes themselves.

Despite many differences in their mechanistic details, theories for the origin of the endomem-
brane system traditionally derive it from inward invaginations of the plasma membrane, such that
the endoplasmic reticulum (ER) lumen is topologically homologous to the environment [1,3–6].
This is true for theories that posit autogenous (nonsymbiotic) eukaryote origins [7] and for
theories that posit eukaryotes to descend from symbiotic associations of prokaryotes [8].
Though most current theories now posit that mitochondria arose in an archaeal host through
endosymbiosis (Box 1), the question of how the merger of two prokaryotic cells gave rise to a cell
possessing a eukaryotic endomembrane system with elaborate vesicle trafficking (Figure 1)
remains unanswered, as does the question of how archaeal lipids of the host's plasma
membrane came to be replaced by bacterial lipids.

Though prokaryotes do not generate intracellular vesicle traffic of the kind found in eukaryotes,
they do indeed generate OMVs, but these are secreted outwardly into the environment, not
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Eukaryogenesis models struggle with
explaining the origin of the endomem-
brane system and the transition from
an archaeal plasma membrane based
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inwardly into the cytosol. Decades ago, microbiologists observed that Gram-negative bacteria
can secrete lipopolysaccharide (LPS) complexes [9] that presumably stem from the outer
membrane [10] into the environment. As explained in the next section, quite a bit is now known
about prokaryotic OMVs, but less about the proteins involved, which are, in some cases,
homologous to those germane to vesicle scission into eukaryotic multivesicular bodies
(MVBs) for example. Moreover, even mitochondria themselves are known to secrete mito-
chondria-derived vesicles (MDVs; Figure 1) into the cytosol [11–14]. No previous theory for
the origin of the eukaryotic endomembrane system, however, incorporates the observations
available for prokaryotic OMVs. Here we close that gap with an evolutionary inference that
accounts for the origin of the eukaryotic endomembrane system in a novel and natural manner.

Prokaryotic Vesicle Secretion
As Deatherage and Cookson [15] write, it has long been known, but underappreciated, that
bacteria and archaea generate OMVs. Both Gram-negative [16] and Gram-positive [17] bacteria
secrete OMVs that stem from their outer membrane (Figure 2). In addition, some bacteria form
nanowires, long tube-like protrusions of the outer membrane [18]. Bacterial OMV cargo ranges
from outer membrane proteins to the content of the periplasmic space, which can be specifically
apportioned for inclusion into OMVs [19]. OMVs are also clinically important as they can include
key toxins associated with bacterial virulence and toxicity [20,21]. The rate of OMV secretion and
the nature of their content can vary according to nutrient availability, stress, host–pathogen
interactions, and exposure to antibiotics such as gentamicin [9,20]. The mechanistic details
behind OMV release are still poorly understood, but in Gram-negative bacteria the release of
OMVs is thought to result from the interplay of peptidoglycan, surface proteins, and the LPS
complexes themselves [10,15,16,21,22].

Archaea also secrete OMVs [15,23], which contain proteins of the S-layer, components of the
outer membrane [24], and in some cases also toxins [25]. The release of archaeal OMVs involves
the Cdv (cell division) proteins A, B, and C [24,26], which are homologous to members of the
eukaryotic ESCRT III protein family involved in membrane vesicle scission [27]. In addition to
their role in OMV secretion, archaeal Cdv proteins are involved in cell division (Figure 2). While
bacteria require FtsZ for cell division, many archaea lack FtsZ, with the formation of the division
ring and the final scission of the daughter cells being mediated by Cdv proteins [26]. Similar to
their role in cell division [26,27], Cdv proteins could aid in the tethering and scission of the
membraneous neck that leads to the release of the nascent OMV from the archaeal plasma

Glossary
Archaeal lipids: membrane lipids
composed of isoprenoid hydrocarbon
side chains linked via an ether bond
to glycerol-1-phosphate.
Autophagosomes: double-
membrane-bound compartments
involved in the degradation of
intracellular proteins and organelles
through autophagy. Outer membrane
fuses with the lysosome to form the
autolysosome.
Bacterial lipids: membrane lipids
composed of a glycerol-3-phosphate
linked to fatty acid side chains via an
ester linkage.
Coatomer: class of proteins involved
in vesicle coat formation. Many share
a similar domain architecture uniting a
b-propeller and an /-solenoid
domain.
Endomembrane system: elaborate
membrane system unique to
eukaryotes; it includes the nucleus,
the endoplasmic reticulum, the Golgi
apparatus, the lysosome, the
peroxisome, autophagosomes, and
the myriad vesicle-trafficking
processes that interconnect them
with each other and the plasma
membrane.
Endosomal sorting complex
required for transport (ESCRT):
multicomponent machinery
subdivided into ESCRT-0, I, II, III; it
facilitates membrane vesicle budding
‘away’ from the cytoplasm.
Flagellar pore complex (FPC): also
known as the ciliary pore complex, a
structure composed of many proteins
that share a high degree of homology
with the nuclear pore complex (NPC)
and regulates transport into the
flagellum.
Glyoxysome: specialized type of
peroxisome found in plants and
some fungi.
Golgi apparatus: highly dynamic
structure of ordered stacks that act
as a sorting station for vesicular
trafficking from ER to the plasma
membrane and other compartments.
Lokiarchaea: recently discovered
archaeal phylum that monophyletically
branches with eukaryotes.
Lysosome: acidified compartment
and final destination for the
degradation of proteins and particles
coming from multivesicular bodies
(MVBs).
Mitochondria-derived vesicles
(MDVs): vesicles that originate from
the mitochondria and fuse with

Box 1. Endosymbiosis at Eukaryote Origin

The origin of eukaryotes hinges upon endosymbiosis, and eukaryotic cell complexity arose in the wake of mitochondrial
origin, not as its prerequisite [57]. From the genomic standpoint a consensus is emerging that the origin of eukaryotes
involved only two distinct partners: an archaeal host cell and an /-proteobacterial endosymbiont that became the
mitochondrion [29,43,44,57,71,74–76]. This consensus does not touch upon whether the archaeal host bore a nucleus
or not, but several issues require consideration concerning this discrepancy. It concerns, in particular, the purpose of a
nucleus in an archaeal cell with cotranscriptional translation that remains unanswered in gradual models for eukar-
yogenesis that place the origin of the nucleus before that of the mitochondrion.

The selective pressures that brought forth the possession of the nuclear envelope (NE) as a permanent fixture of
eukaryotic cells are, we suggest, distinct from the OMV-dependent ER origin of the NE itself. The presence of
spliceosomes in the eukaryote common ancestor suggests that the initial selective advantage of possessing an NE
was the spatiotemporal separation of spliceosomal splicing from translation, with spliceosomal introns stemming from
group II introns acquired via endosymbiotic gene transfer from the mitochondrial symbiont [77]. Spliceosomal splicing
requires a nucleus to exclude active ribosomes from intron-containing transcripts, because ribosomes operate much
more rapidly than spliceosomes, such that cotranscriptional translation on nascent transcripts bearing spliceosomal
introns would lead to defective polypeptides only. The physical exclusion of ribosomes from active chromatin via
membranes would allow the slow process of splicing to go to completion before translation sets in. Similar to the intron
hypothesis for the origin of the nucleus [77], our present suggestion for the origin of the endomembrane system requires a
non-nucleated archaeal host with cotranscriptional translation at the origin of mitochondria.
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various other compartments such as
peroxisome and MVBs.
Multivesicular bodies (MVBs):
membrane-bound compartments
containing cytoplasm-derived vesicles
destined for degradation at the
lysosome.
N-glycosylation: adds
oligosaccharide side chains to certain
asparagines in proteins. Typically
occurs in the ER lumen of
eukaryotes.
Nuclear pore complex (NPC):
multiprotein complex that spans the
nuclear envelope and regulates
transport. Many NPC proteins share
similarities with proteins of the
flagellar pore complex (FPC) and
vesicle coat.
Peroxisome: compartment involved
in the catabolism of fatty acids,
polyamines, and hydrogen peroxide.
Phagocytosis: uptake of large
particles such as entire bacterial cells
by macrophages or amoebae. Food-
particle-containing phagosomes fuse
with MVBs and ultimately the
lysosome for degradation.
Ribophorin I: protein of the rough
ER that binds to the SEC complex,
promoting N-glycosylation by serving
as a substrate-specific chaperone.
Sarcoplasmic/endoplasmic
reticulum Ca2+ ATPase (SERCA):
a P-type ATPase found in the ER
that regulates Ca2+ storage in the ER
lumen.
SecY/Sec61p: main translocon of
the SEC complex involved in
translocation of nascent polypeptides
from ribosomes into the ER lumen.
V-ATPase: a type of proton pump
that acidifies compartments,
commonly found in vacuoles and
lysosomes. The eukaryotic V-ATPase
shares significant homology with the
archaeal plasma membrane ATPase
(or the A-ATPase).

membrane into the environment [24]. Importantly, prokaryotic OMV flux, whether bacterial or
archaeal, is not inward but outward (Figure 2) in cases reported to date.

A Bacterial Vesicle Model for the Origin of the ER
The essence of our proposal is that the /-proteobacterial ancestor of mitochondria was also
able to produce OMVs, that it did so as it became an endosymbiont in its archaeal host, and that
those OMVs provided the initial seed of the eukaryotic endomembrane system. This suggestion
is compatible with the widespread production of OMVs among modern prokaryotes and with the
more recent observation that mitochondria themselves generate MDVs within eukaryotic cells
today [11–14]. Upon endosymbiosis, the archaeal secretion system (SecY/Sec61p) and its
associated N-glycosylation machinery integrated readily into the endosymbiont's OMVs, giving
rise to a primordial ER that provided the founding stock from which all other endomembrane
compartments, including the nucleus, arose (Figure 3, Key Figure).

In terms of the number and nature of evolutionary innovations required to evolve a basic
endomembrane system with selectable ER function, our minimal premises can hardly be
underbid. We require that the eukaryote common ancestor possessed a mitochondrial symbiont
[28], which is now consensus among evolutionary cell biologists [2,29]. We also require that the
host was a normal archaeon [28], lacking both a nucleus and its own pre-existing endomem-
brane system at mitochondrial acquisition, its archaeal chromosomes located in the cytosol and
subject to cotranscriptional translation [30]. Thus, our model requires a mechanism of entry for
the endosymbiont that is independent of phagocytosis and thus demands that one prokaryote
can become an endosymbiont within another prokaryote. Clear examples for such symbioses
do indeed abound [31,32]. Phagocytosis is not a prerequisite to endosymbiosis and in light of
archaeal physiology is problematic for reasons discussed below (and in Box 2).

If the OMV-producing ancestor of mitochondria continues with its natural activity of producing
OMVs consisting of bacterial lipids in an archaeal host with cytosolic chromosomes, what
happens? Quite a lot happens, and a quite sudden transition appears possible, too, without
even requiring evolutionary inventions, merely spatial reorientation of pre-existing host (archaeal)
and symbiont (bacterial) components by virtue of endosymbiosis (Figure 3). Notably, prior to
endosymbiosis, the symbiont's OMVs diffuse into the environment. In the closed quarters of an
archaeal cytosol, the membrane vesicles have no place to go. They can fuse, either with
themselves to generate larger vesicular compartments, or with the plasma membrane to export
their contents to the cell exterior. The former generates a basic ER topology. The latter
constitutes, we propose, the ancestral outward state of eukaryotic membrane flux, and further-
more converts the chemical composition of the host's plasma membrane from isoprene ethers
to bacterial fatty acid esters. Importantly, these three salient eukaryotic traits – cytosolic vesicles,
outward membrane flux, and the accumulation of bacterial lipids in the archaeal plasma
membrane – arise without need for any evolutionary invention (Figure 3). They arise as the
result of an OMV-producing bacterium living as an endosymbiont within an archaeon.

The presence of bacterial OMVs in the archaeal cytosol provide a fundamentally new and
continuously arising membrane system in the host's cytosol. The consequence is that proteins
once destined to the host's plasma membrane via the secretory pathways now have an
additional, alternative target: cytosolic OMVs. Accordingly, the host's SecY/Sec61p system,
which, prior to symbiosis, facilitated the cotranslational insertion of membrane proteins into the
only membrane facing the cytosol – the plasma membrane – now has a new target: OMVs of
endosymbiotic origin. This formed a primordial ER membrane architecture, which matches
exactly the topology of the modern eukaryotic SEC complex at the rough ER (Figures1 and 3).
Initially, this primitive vesicle flux to the plasma membrane required not a single invention, only
endosymbiosis, and it provided ground for natural selection (e.g., of coatomer proteins and
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targeted flux) to work on. Because our proposal posits the endosymbiont's OMVs to physically
generate the primordial ER, it directly accounts for the observation that only eukaryotes, the cells
descended from a mitochondrion-bearing ancestor, possess a bona fide endomembrane
system. In the following, we briefly consider the properties and components of the eukaryotic
endomembrane system, and their homologies.

Connections of the ER with Mitochondria and Other Compartments
Ostensibly, relics of the ER's origin from endosymbiotic OMVs are still visible today. Prokaryotes
synthesize their lipids directly at the plasma membrane, but not so in eukaryotes. Eukaryotic lipid
synthesis – which is similar to bacterial membrane lipid synthesis and not to the archaeal lipid
synthesis pathway – occurs mainly at the ER and involves considerable exchange with the
mitochondria [33,34]. In traditional invagination models for the origin of the endomembrane
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Figure 1. The Eukaryotic Cell. The one decisive trait of the eukaryotic cell is its elaborate endomembrane system. At its centre stands the smooth and rough
endoplasmic reticulum (ER) [78], the latter being studded with ribosomes that cotranslationally transport proteins across the SEC complex [41]. For N-glycosylation,
ribophorin I associates with the Sec61 translocon and serves as a substrate-specific chaperone [79]. Vesicles that bud from the ER can transverse the Golgi – for further
modification of cargo and lipids and subsequent sorting – or generate, and continuously supply, other compartments, such as the peroxisome and phagosome [50].
Mitochondria-derived vesicles (MDVs) help to form autophagosomes that originate at the ER–mitochondria contact sites [40] and peroxisomes [12]. Multivesicular bodies
(MVBs) represent specialised endosome-associated compartments that contain internal vesicles [80]. They also receive MDVs for subsequent degradation at the
lysosome [13]. ESCRT proteins mediate the scission of membranes to release vesicles into the MVBs [80]. The endomembrane system of the eukaryotic cell is a merger of
host (red) and endosymbiont (blue) components.
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system, the ER lumen is homologous to the environment. In our model, the ER lumen is
homologous to the periplasm of the mitochondrial endosymbiont (Figure 3), the mitochondrial
intermembrane space. The main sites of Ca2+ storage (mediated by SERCA) and signalling in
eukaryotes are the ER and mitochondria [35], and indeed Escherichia coli concentrates Ca2+

between its inner and outer membrane under certain conditions [36]. The ER furthermore
temporarily connects to other compartments and mitochondria through dedicated 10–30 nm
long contact sites [37,38], from which autophagosomes arise and expand through MDV secretion
[39]. Vesicle transport between mitochondria and peroxisomes, mediated by Vps35, has been
recently observed [12], as well to MVBs [13]. Such contact sites are crucial for lipid biosynthesis, ion
exchange and storage, signaling, and a range of membrane dynamics [34].

In addition, eukaryotic protein secretion commences at the rough ER through the binding of the
80S ribosome to the SEC complex that receives the nascent polypeptide chain to initiate cotransla-
tional targeting into the ER lumen [40]. The entire eukaryotic SEC machinery is of archaeal origin
[41,42], as is the ribosome [43,44]. The same is true for Rpn1 that stems from archaea [44]. By
inference, the entire archaeal SecY/Sec61p/Rpn1 system for cotranslational N-glycosylation [45]
was seamlessly integrated early into mitochondrial OMVs, which subsequently fused with the
host's plasma membrane (Figure 3B). One might interject that the archaeal SecY/Sec61p system
would be unlikely to integrate into a bacterial lipid bilayer, but the crystal structure of the archaeal
Sec61 complex was determined from proteins expressed in E. coli [46].

N-glycosylation itself is not as unique to eukaryotes as once believed, being widespread among
prokaryotes [47,48]. A continuous flow of bacterial lipid OMVs to the archaeal plasma mem-
brane, also for the release of N-glycosylated proteins, would have naturally transformed the lipid
composition of the archaeal plasma membrane from ether-linked isoprenes to ester-linked fatty
acids (Figure 3B). Considering the diameter of bacterial OMVs (10–300 nm; [15]) and the
diameter of an average archaeon (1 mm; [49]), less than 10 000 OMVs can generate enough
membrane material to transform a surface area equal to that of an average archaeon. A clear
implication of our proposal is that the lipid transition in eukaryotes could have occurred very
rapidly in evolutionary terms, without precisely defining rapid in specific years or generations.

The secretion of vesicles to the plasma membrane is hardly the sole function of the ER. Vesicles that
originate from the ER fuse with, and form, all other endomembrane-bounded cell
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Figure 2. Prokaryotic Membrane Vesicle Secretion. Both bacteria and archaea release outer membrane vesicles
(OMVs) into the environment that bud from the outer membrane. In archaea the Cdv proteins, which are involved in cell
division and are homologous to proteins of the eukaryotic ESCRT machinery, mediate vesicle budding. All prokaryotes use
70S ribosomes for protein translation, and all bacteria, but only some archaea, make use of FtsZ for cell division. The
illustration focuses on components discussed in the context of the proposal for the origin of the eukaryotic endomembrane
system, such as the storage of Ca2+ (green hexagons) in the periplasmic space of Gram-negative bacteria or ribophorin 1, a
protein involved in N-glycosylation.

Trends in Microbiology, July 2016, Vol. 24, No. 7 529



compartments, and these include the Golgi apparatus, the lysosome, the peroxisome, the
glyoxysome, and the autophagosome [50]. Analyses of peroxisomal function and proteins, such
as those for fatty acid b-oxidation, indicate that mitochondria predated peroxisomes in evolution
[51,52], which is consistent with our model. In our proposal, the ER is the central hub upon which
the biogenesis of all other nonendosymbiotic compartments depends, including the nucleus.

Key Figure

A Model for the Evolutionary Origin of the Eukaryotic Endomembrane System
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Figure 3. (A) After endosymbiosis, the endosymbiont continues with OMV secretion, thereby generating the first vesicular flux inside the archaeal cytosol. (B)
Cytoplasmic OMVs provided an alternative target for the archaeal SecY/Sec61 and N-glycosylation machinery, generating a primitive endoplasmic reticulum (ER) and
stabilizing OMV flux towards the plasma membrane (PM), where N-glycosylated proteins are released. This simultaneously initiated the conversion of the PM from
archaeal ether-linked isoprenes (orange) to bacterial ester-linked fatty acids (blue). (C) The invasion of group II introns through endosymbiotic gene transfer drove the
formation of the nucleus, may be with the aid of Cdv proteins. The presence of a primitive ER allowed the evolution of additional compartments, including a vacuole acidified by
the archaeal A-ATPase (today the V-ATPase). (D) Together with the nucleus, the nuclear pore complex (NPC) was formed using proteins that may be originated from the fusion
of genes encoding b-propeller folds and /-solenoid domains, ribosomes were now excluded from the nucleus. (E) A fully functional endomembrane system, in which the
nuclear envelope (NE) is continuous with the ER, was in place, and coatomer proteins initiated the emergence of the first inbound vesicle budding (endocytosis). (F)
Simultaneously, the flagellum evolves from proteins that originate from the NPC and/or the endosome. A virtue of this model is that the ancestral direction of membrane flux is a
natural consequence of a fully formed pre-existing property of the mitochondrial endosymbiont that continues until today (Figure 1).
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On the Origin of the Nucleus
The ER is contiguous with the nuclear envelope (NE), which, similar to the ER, is a single folded
membrane with two leaves (Figure 1). In eukaryotes with open mitosis, the NE arises from ER
vesicles, which store proteins of the NE when the nucleus disintegrates during cell division
[53,54]. In eukaryotes with closed mitosis, the NE increases in size during cell growth via lipids
supplied via the ER [55]. In other words, the nuclear envelope can be viewed as a functionally
distinct extension of the ER. As with the emergence of the eukaryotic SEC system, the archaeal
host added crucial components to cytosolic membranes of endosymbiont origin (Figure 3).
ESCRT III and the p97 AAA-ATPase control annular fusion of the newly forming NE [56], a
process topologically resembling membrane fusion at the end of cytokinesis. Archaeal cell
division and OMV secretion depends on CdvB and CdvC that are homologous to eukaryotic
ESCRT III proteins and Vps4, respectively [24,26,27]. The formation of a primordial ER, and later
an NE, could have involved archaeal precursors of ESCRT proteins and small GTPases of the
archaeal host, such as those identified in Lokiarchaea [44]. Consistent with their function during
cell division, we suggest that, during evolution, the NE emerged from the ER (Figure 3C), while
the ER emerged from the mitochondrion. This order is independent of, but fully compatible with,
bioenergetic considerations that identify the origin of the mitochondrial endosymbiont in an
archaeal host (Box 1) as the rate-limiting event at eukaryote origin from which all other processes
of eukaryogenesis unfold [57].

Some proteins of the nuclear pore complex (NPC), the flagellar pore complex (FPC),
intraflagellar transport, and some coatomer proteins that form vesicle coats share similar
structural properties (or even entire proteins) and have hence been suggested to be evolutionarily

Box 2. The Energetic Price of Phagocytosis

If the archaeal host that acquired the mitochondrion were phagocytotic, it must have had all the parts required for
phagocytosis, namely, a fully developed cytoskeleton, food vacuoles, and an endomembrane system. In other words,
assuming a phagocytotic origin of mitochondria [3–6,65] means assuming that the host had evolved eukaryotic
complexity without the participation of mitochondria. That rekindles the archezoa theory, which was rejected over a
decade ago [81] because its predictions failed. Mitochondria are tied to eukaryote origin, hence to the origin of
complexity. Why? The origin of eukaryote complexity required energy, mitochondrial energy. Eukaryotic cell complexity
emerges from massive amounts of proteins that constitute and modulate the cytoskeleton and membrane flux in the
eukaryotic cytosol. Protein synthesis is 75% of a cell's energy budget; mitochondria afforded eukaryotes internalized
bioenergetic membranes that scale freely with increasing cell volume [57], and that covered the costs of that protein
synthesis.

Prokaryotes synthesize ATP at the plasma membrane. Eukaryote origin witnessed the loss of all ATP synthesis at the
plasma membrane and the transition to compartmentalized energy metabolism with glycolytic ATP synthesis in the
cytosol and chemiosmotic ATP synthesis in mitochondria [28,57,70]. The bioenergetic transition at eukaryote origin was
evolutionarily rapid. How so? The archaeal host's plasma membrane ATPase did not become a pseudogene. It remained
under functional constraint, was targeted via the Sec pathway to a novel endomembrane, and reversed function to acidify
food vacuoles at cytosolic ATP expense.

Phagocytosis first theories fail to account for the source of cytosolic ATP required to acidify food vacuoles. One might
counter that fermentation was the source, but archaeal fermenters are chemiosmotic, using their ATPase at the plasma
membrane [82]. Provided that carbon was supplied to the mitochondrion through importers integrated into the archaeal
plasma membrane, only one key innovation was required to transform the mitochondrial endosymbiont into an ATP-
exporting organelle – the ADP/ATP carrier in the mitochondrial inner membrane [83]. This and other independent lines of
evidence [84,85] all suggest rapid eukaryote origin.

Phagocytosis demands a fully functional endomembrane system, in turn requiring proteins that facilitate vesicle flux and
the membrane vesicles themselves. Key proteins of the endomembrane system have homologous domains in prokar-
yotes, they underwent duplication, diversification and functional specialization at eukaryote origin [1,2]. Their diversifica-
tion required the intracellular vesicles that afforded these proteins their selectable functions. Mitochondria not only
supplied the energy needed to evolve eukaryotic endomembrane proteins, they physically provided the vesicles and
source for their natural selection. Similar to energetics, bacterial outer membrane vesicles (OMVs) place mitochondria
before phagocytosis in the sequence of events at eukaryote origin.
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linked [1,58–60]. Many of these proteins are characterised by a WD-domain containing
b-propellers followed by an /-solenoid domain. This architecture allows for membrane interaction
and bending, two important requirements for re-shaping membranes. Although WD-domains and
solenoid-like proteins are widespread among prokaryotes [61,62], their domains are rarely orga-
nized as in eukaryotic cells [63], although the eukaryotic organization could result from simple gene
fusion events [64]. Phylogenetic analysis suggests that these eukaryotic WD-domain proteins
arose at roughly the same time [1]. In light of the present considerations, the nuclear envelope and
pore came first, later followed by the emergence of the flagella and endocytosis, and not vice versa
as according to recent suggestions [3,6,65].

Phagocytosis and Energetics
Many traditional models for the origin of the endomembrane system posit that phagocytosis arose
prior to mitochondrial origin [3–5,65]. Phagocytosis requires a multiprotein machinery that forms
the phagosomal cavity, which might have evolved multiple times independently during eukaryote
evolution [66]. Scission of endosomes and phagosomes from the plasma membrane involve
dynamins, a family of large GTPases [67]. Phylogenomic analysis of the dynamin segments
suggests that the ancient version responsible for mitochondrial division was also the one mediating
scission of early endomembrane vesicles [68]. Dynamin-related proteins such as DynA are
common in bacteria, and the only three dynamin-like protein encoding genes found in archaea
are of bacterial origin [69]. It appears that eukaryotic dynamins evolved from endosymbiotic
dynamin-like proteins, speaking in favor of mitochondria proceeding phagocytosis.

Phagocytosis also requires a process that acidifies the food vacuole. Food vacuoles are useless
if their contents cannot be broken down by proteases, which in eukaryotes are acid-activated
[70]. Eukaryotic vacuole acidification requires, in turn, an important archaeal component, the
V-ATPase, which consumes ATP to acidify vacuoles rather than synthesizing ATP from redox-
generated ion gradients [71]. During eukaryote origin, the host's plasma membrane rotor–stator
archaeal A-type ATPase (the eukaryotic version is called the vacuolar or V-type ATPase [72]) was
re-targeted to a new compartment of OMV origin (now the lysosome), concomitant with a
functional reversal of direction from ATP synthesis in archaea to ATP consumption in eukaryotes.
This raises an interesting question seldom, if ever, asked in the context of eukaryote endomem-
brane origin: if phagocytosis preceded the mitochondrion, where was the cytosolic ATP coming
from that allowed the V-ATPase to run backwards? And given that all the enzymes of chemios-
motic energy harnessing in eukaryotes stem from bacteria [69,73], why did the host lose all
components of membrane bioenergetics other than the A-type ATPase? We suggest that the
answer to both questions is mitochondria, for two reasons (Box 2).

Concluding Remarks
The present proposal for the origin of the ER and derived membranes differs in premises and
substance from previous suggestions in the literature, in that it is based on outward vesicle flux,
not inward. Our proposal requires almost no innovations, exceptional or unique evolutionary
processes in either the mitochondrial ancestor or the archaeal host in order to bring forth a basic
ER function with outward vesicle flux. Our proposal raises new questions (see Outstanding
Questions), while directly accounting (i) for the archaeal ancestry, localisation and orientation of
the secretory machinery that performs cotranslational insertion of proteins into eukaryotic
membranes, (ii) for the circumstance that eukaryotes store Ca2+ in the ER lumen, which is,
in this model, homologous to the ancestral mitochondrial periplasmic space, (iii) for the ancestral
ground state and bacterial lipid composition of eukaryotic endomembranes, (iv) for the archaeal
nature of eukaryotic ribosomes and N-glycosylation at the ER, (v) for the finding that eukaryotic
lipid synthesis occurs predominantly at the ER and mitochondria, not at the plasma membrane,
(vi) for the transitional mechanism that converted the composition of eukaryotic membranes from
archaeal to bacterial lipids, (vii) for the formation of the nucleus from the ER during cell

Outstanding Questions
As new archaeal lineages become char-
acterized that are, by the measure of
ribosomal phylogeny, more closely
related to the host that acquired the
mitochondrion, will we find large, com-
plex, eukaryote-like cells that never har-
boured mitochondria (like the archezoa
theory once predicted), or will they be
morphologically normal archaeal cells?

To what extent do mitochondria-
derived vesicles exist among eukary-
otic supergroups, and what functions
do they perform?

Given technologies to insert OMV-pro-
ducing bacteria into archaeal cells or
suitable synthetic analogues, will it be
possible to generate analogues of
primitive endomembrane systems?

Could the fusion of prokaryotic b-pro-
peller and /-solenoid domains gener-
ate protocoatomer proteins that
facilitate positive membrane curvature?

Do mitochondria-derived vesicles con-
tribute to the rebuilding of the ER and
nucleus after mitosis in some eukary-
otic lineages?
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development, not vice versa, and (viii) for the archaeal ancestry, localisation, and orientation of
the eukaryotic V-ATPase in food vacuoles. From our proposal, a natural evolutionary order in the
origin of several key characters of eukaryotic cells unfolds in that, during eukaryogenesis, the ER
represented the first autogenous (nonendosymbiotic) cell compartment, formed from OMVs
secreted by the mitochondrion, subsequently giving rise to both the nuclear envelope and an
ancestrally outward endomembrane flux.
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