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Evolutionary biologists like to think in terms of trees. Since

Darwin, biologists have envisaged phylogeny as a tree-like

process of lineage splittings. But Darwin was not concerned

with the evolution of microbes, where lateral gene transfer

(LGT; a distinctly non-treelike process) is an important

mechanism of natural variation, as prokaryotic genome

sequences attest [1-4]. Evolutionary biologists are not

debating whether LGT exists. But they are debating - and

heatedly so - how much LGT actually goes on in evolution.

Recent estimates of the proportion of prokaryotic genes that

have been affected by LGT differ 30-fold, ranging from 2%

[5] to 60% [6]. Biologists are also hotly debating how LGT

should influence our approach to understanding genome

evolution on the one hand, and our approach to the natural

classification of all living things on the other. These debates

erupt most acutely over the concept of a tree of life. Here we

consider how LGT and endosymbiosis bear on contemporary

views of microbial evolution, most of which stem from the

days before genome sequences were available.

A tree of life?
When it comes to the concept of a tree of life, there are

currently two main camps. One camp, which we shall call the

positivists, says that there is a tree of life, that microbial

genomes are, in the main, related by a series of bifurcations,

and that when we have sifted out a presumably small

amount of annoying chaff (LGT), the wheat (the tree) will be

there and will still our hunger for a grand and natural system

[7-10]. The other camp, which we will call the microbialists,

says that LGT is just as natural among prokaryotes as is

point mutation, and that furthermore, it has occurred

throughout microbial history. This means that even were we

to agree on a grand natural classification, the process of

microbial evolution underlying it would be fundamentally

undepictable as a single bifurcating tree, because a sub-

stantial component of the evolutionary process - LGT - is not

tree-like to begin with [1,11,12].

A recent paper by Ciccarelli et al. [9] brings these two views

head-to-head. It purports to weigh in heavily for the

positivists, but in doing so it inadvertently provides some of

the strongest support for the microbialist camp that has been

published so far. A closer look reveals why. Ciccarelli et al. [9]

report an automated procedure for identifying protein families

that are universally distributed among all genomes, with

pipeline alignment and tree building. Their routine looked for

possible cases of LGT (detected as unusual tree topologies),

excluded such proteins, and reiterated the procedure until the

universe of proteins had been examined. This left them with

31 presumably orthologous protein sequences present in 191

genomes each, the alignments of which were concatenated to

produce a data matrix with 8,089 sites (of which only 1,212

would have remained had gapped sites been excluded). A

maximum likelihood tree was inferred from this matrix,

motivating a brief discussion of some important events in life’s

history as inferred from that tree.

Fair enough, one might say, what is there to debate? Lots.

Bearing in mind that an average prokaryotic proteome
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represents about 3,000 protein-coding genes, the 31-protein

tree of life represents only about 1% of an average prokary-

otic proteome and only 0.1% of a large eukaryotic proteome.

Thus, the positivists can say that there is a tree of life after

all: a bit skimpier than expected, but a tree nonetheless. But

the microbialists, glaring at the same data, can say that the

glass is only 1% full at best, and more than 99% empty!

There might be a tree there, but it is not the tree of life, it is

the ‘tree of one percent of life’.

Looking at the issue openly, the finding that, on average,

only 0.1% to 1% of each genome fits the metaphor of a tree of

life overwhelmingly supports the central pillar of the micro-

bialist argument that a single bifurcating tree is an

insufficient model to describe the microbial evolutionary

process. If throwing out all non-universally distributed

genes and all suspected cases of LGT in our search for the

tree of life leaves us with a tree of one percent, then we

should probably abandon the tree as a working hypothesis.

When chemists or physicists find that a given null hypothe-

sis can account for only 1% of their data, they immediately

start searching for a better hypothesis. Not so with microbial

evolution, it seems, which is rather worrying. Could it be that

many biologists have their heart set on finding a tree of life,

regardless of what the data actually say?

Which hypotheses (if any) are we testing?
By themselves, genomes cannot tell us anything about

evolution, microbial or otherwise. Evolutionary biology is

about hypothesis testing: one checks to see if data from

genomes provide support or not for one or the other

hypothesis that was generated independently of the genome

data used to test it. What ideas about early evolution that

could be tested with genome data are currently discussed by

specialists in the field? We consider five distinctly different

views, each of which enjoys some popularity.

The rRNA tree
The first is the classical ribosomal RNA (rRNA) tree of life as

constructed by Carl Woese and colleagues [13-16] from the

late 1970s onwards (Figure 1a). It suggests, in its current

interpretations, that the universal ancestor of all life (the

progenote) was a communal collection of information-

storing and information-processing entities that were not yet

organized as cells. LGT is seen as the main mode of genetic

novelty at the early stages of evolution, and the process of

vertical inheritance arises only with the process of ‘genetic

annealing’ from within this mixture. At this point, the

emerging cellular lineages of prokaryotes and eukaryotes

become refractory to LGT, and are considered to traverse a

kind of ‘Darwinian threshold’ from the organizational state

of supramolecular aggregates to the organizational state of

cells. Traversing that threshold is seen as equivalent to the

primary emergence, from the broth in which life arose, of the

three kinds of cells that we recognize today - archaebacteria,

eubacteria and eukaryotes. The classical tree [13] assumed

its current shape when anciently diverged protein-coding

genes suggested that the root of the universal tree lies on

the bacterial branch [17,18]. This view admits that

chloroplasts and mitochondria did arise via endosymbiosis,

but it sees no role for mitochondria or any other kind of

symbiosis in the emergence of the eukaryotic lineage, and

the genetic contribution of mitochondria to eukaryotes is

seen as detectable, but negligible in evolutionary or

mechanistic terms [19]. The classical tree is taken by some

to indicate that eukaryotes are in fact sisters of archaea at

the level of the whole genome [9,16], a view that is,

however, mainly founded on extrapolation from the rRNA

tree to the rest of the genome without actually looking at all

of the data.

The introns-early tree
The introns-early (or eukaryotes-first) tree emerged when

Ford Doolittle [20] suggested that the ancestral state of

genes might be ‘split’, and that some introns in eukaryotic

genes might thus be carryovers from the assembly of

primordial protein-coding regions. In that case, the organi-

zational state of eukaryotic genes (having introns) would

represent the organizational state of the very first genomes

[21] and the intronless prokaryotic state would be a derived

condition (Figure 1b), a view that was christened ‘introns-

early’ [22]. Doolittle has since abandoned this view [23], but

it has found other proponents [24,25]. They draw upon

different lines of evidence in support, and call their position

‘introns-first’ rather than introns-early [25]. They agree that

the eubacterial root assumed for the rRNA tree is

questionable and that a eukaryote root is more likely [26,27]. 

Some of the proponents of the introns-first hypothesis

interpret various aspects of RNA processing in eukaryotes

(in addition to introns), such as rRNA modification

through small nucleolar RNAs (snoRNAs), as direct

carryovers from the RNA world and hence as evidence for

eukaryote antiquity [26,28,29]. There is no prokaryote-to-

eukaryote transition in the introns-early tree, because

prokaryotic genome organization is seen as a very early

derivative of eukaryotic gene organization. Accordingly,

the relationship of eukaryotes and prokaryotes is depicted

largely as a more-or-less unresolved trichotomy [19], and

the contribution of organelles or symbiosis to eukaryote

evolution is admitted as existing, but negligible in terms of

evolutionary significance.

The neomuran tree
The neomuran tree (Figure 1c) stems from the work of Tom

Cavalier-Smith [30-32]. No theory on the relationship of

prokaryotes to eukaryotes, current or otherwise, is more

explicit in terms of details of mechanism [32]. In the main, it

suggests that the common ancestor of all cells was a free-

living eubacterium (in the most recent version of the theory,

a Chlorobium-like anoxygenic photosynthesizer) and that
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Figure 1
Five different current views of the general shape of microbial evolution. (a) The ‘classical’ tree derived from comparison of rRNA sequence and rooted
with ancient paralogs. It is thought to arise from a collection of non-cellular supramolecular aggregates in the primordial soup, between which there is
lateral gene transfer (LGT). A process dubbed genetic annealing gives rise to cells. In this scenario, the three domains of life - Eubacteria, Archaebacteria
and Eukaryotes - branch off in that order. (b) The introns-early tree. This proposes that the ancestor of all three domains contained introns, which were
lost in the Archaebacteria and Euacteria. (c) The neomuran tree. This introduces an ancestral group of organisms from which Archaeabacteria and
Eukaryotes arose after the loss of the eubacterial-type cell wall in one lineage (the neomuran revolution). (d) The symbiotic tree. This proposes that the
ancestor of eukaryotes originated by the endosymbiosis of one prokaryote (X) in another prokaryote host (Y), giving rise to nucleated (n) eukaryotic
cells. The different groups of eukaryotes arose by subsequent separate endosymbiotic events involving various prokaryotes - the ancestors of plastids (p)
and mitochondria (m) - in host cells of this lineage. (e) The prokaryote-host tree. This also incorporates endosymbiosis as the origin of mitochondria and
plastids, but proposes that the endosymbiotic event that gave rise to a cell containing nucleus and mitochondria occurred in a prokaryotic host. This
leads to a ring-like relationship between the ancestral organisms rather than a tree (see inset 2). This model also invokes extensive LGT throughout
microbial evolution (see inset 1). See text for further details.
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eubacteria were the only organisms on Earth until about

900 million years ago. At this time, a member of the

eubacteria, in recent versions an actinobacterium, lost its

murein-containing cell wall and was faced with the task of

reinventing a new cell wall (hence the Latin name: neo, new;

murus, wall). This led to the origin of a group of rapidly

evolving organisms that Cavalier-Smith calls the Neomura.

The loss of the cell wall precipitated an unprecedented

process of descent with modification in this group. During a

short period of time (perhaps 50 million years), the

characters that are shared by archaebacteria and eukaryotes

arose (for a list of those characters, see [31]). The neomuran

lineage then underwent diversification into two lineages, with

another long list of evolutionary changes in each. One lineage

invented isoprene ether lipid synthesis and gave rise to

archaebacteria. The other became phagotrophic and gave rise

to the eukaryotes. In older versions of this hypothesis, some

eukaryote lineages branched off before the mitochondrion

was acquired; these lineages were once called the Archezoa

[30]. In newer versions, the mitochondrion comes into the

eukaryote lineage before any archezoan can arise. No

evolutionary intermediates from the transitions of actino-

bacteria into neomurans, archaebacteria, and eukaryotes

persist among the modern biota, which is a distressing aspect

of the theory for many specialists. The neomuran theory

accounts mainly for cell biological characters, but not for

sequence similarity among genes.

The symbiotic tree: a merger of distinct branches
At about the same time that archaebacteria and introns

were being discovered, biologists were still fiercely

debating the issue of whether mitochondria and

chloroplasts were once free-living prokaryotes [33] or not

[34]. Lynn Margulis had revived the old and controversial

theories from the early 20th century regarding the

endosymbiotic origin of chloroplasts and mitochondria

[35,36]. Margulis’s version of endosymbiotic theory was

one of eukaryotes-in-pieces, and has always contained an

additional partner at eukaryote origins to which no

specialists other than herself have given credence: the

spirochete origin of eukaryotic flagella [35-37]. Other

prokaryote symbioses en route to eukaryotes involve the

possible endosymbiotic origin of peroxisomes [38,39], or

an endosymbiotic origin of the nucleus [40-42]. Common

to those theories are a eubacterial-archaebacterial merger

of some sort at the origin of eukaryotes (X and Y in Figure

1d), giving rise to a nucleated but mitochondrion-lacking

cell - an archezoon [30] - followed by the origin of

mitochondria.

From the viewpoint of more modern data, the spirochete

origin of eukaryotic flagella can be seen as both unsupported

and unnecessary [43], as can an endosymbiotic origin for

peroxisomes, for which there are also no supporting data

[44]. The origin of the nucleus is still debated [45].

The prokaryote-tree with LGT: a merger of
ephemeral genomes
An exciting prospect predicted by all the foregoing hypo-

theses was that the most primitive eukaryotic lineages

should lack mitochondria. That sent molecular biologists

scrambling to study contemporary eukaryotes that were

thought to lack mitochondria, work that unearthed

findings of the most unexpected kind: all of the

purportedly primitive and mitochondrion-lacking lineages

were not really primitive nor did they even lack

mitochondria. The mitochondria are there, it turns out, but

they do not use oxygen [46,47], they are small [48], and

some do not even produce ATP [49]. These ‘new’ members

of the mitochondrial family among eukaryotic anaerobes

(and some parasitic aerobes [50]) are called

hydrogenosomes and mitosomes (reviewed in [51]). That

pointed to the possibility that there never were any

eukaryotes that lacked mitochondria; hence, the host that

acquired the mitochondrion might have just been an

archaeon outright (Figure 1e). Several hypotheses of this

sort have been published, some of which account for the

common ancestry of mitochondria and hydrogenosomes

(reviewed in [52]) and some of which account for the origin

of the nucleus [53].

Like the symbiotic tree, the prokaryote-host tree can

accommodate LGT [54] without problems (Figure 1e, inset

1), and furthermore implies the existence of ring-like

structures [55], rather than tree-like structures linking

prokaryotes and eukaryotes at the level of gene content and

sequence similarity (Figure 1e, inset 2). The only real

difference between the symbiotic tree and the prokaryote-

host tree hypotheses concerns the number of symbiotic

partners involved at eukaryote origins - more than two

versus two, respectively - and the existence (or

nonexistence) of primitively amitochondriate eukaryotes.

Both predictions are, in principle, testable with genome

data, but the tests become a bit more complicated than

standard phylogenetic tests, because of LGT [52].

The biggest branch is the biggest problem
For many biologists concerned with life’s deeper relationships,

the longest and most strongly supported branch in many

current versions of the tree of life as depicted in Figure 1a or in

recent papers [9,16] is also the most misleading: the central

branch that implies a sister-group relationship between

eukaryotes and archaebacteria [9,13]. It is misleading because

at the level of genome-wide patterns of sequence similarity,

eukaryotes are far more similar to eubacteria than they are to

archaebacteria [56]. Put another way, eukaryotes possess

more eubacteria-related genes than they possess

archaebacteria-related genes [56,57]. This has escaped the

attention of almost everyone, and is one of evolutionary

biology’s best-kept secrets, at least in circles where the rRNA

tree is thought to speak for the whole genome.
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An example emphasizing this point is shown in Figure 2,

where the percentage amino-acid identity between eukary-

otic proteins (human in this example; yeast in [56]) and

their homologs in prokaryotes (when present) is depicted. Of

the 5,833 human proteins that have homologs in these

prokaryotes at the specified thresholds, 2,811 (48%) have

homologs in eubacteria only, while 828 (14%) have

homologs in archaebacteria only, and 4,788 (80%) have

greater sequence identity with eubacterial homologs,

whereas 877 (15%) are more similar to archaebacterial

homologs (196 are ties). The proteins comprising the recent

tree of life - or the tree of one percent [9] - belong almost

exclusively to the informational class [57]; that is, they are

involved in information storage and processing. It is well

known that eukaryotic informational genes are archaea-like

[55-57]. They indicate a close relationship of eukaryotes and

archaebacteria, but as is clearly visible in Figure 2, they

speak for only a very small minority of eukaryotic genes [56].

Eukaryotes possess genes that they have inherited from

archaebacteria and from eubacterial organelles [58]. But in

plants, the acquisition of genes from cyanobacteria (plastids)

has been estimated as 18% of the genome; the acquisition

from mitochondria could be even greater [52]. Because such

substantial gene influxes cannot be represented with

bifurcating trees, they are usually just ignored.

A refreshing exception to the assumption that the tree of life

is a tree to begin with is the recent paper by Rivera and Lake

[55], who reported a procedure that takes LGT into account;
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Figure 2
As a representative eukaryote example, the non-redundant set of human proteins (NCBI’s Refseq database [70]) was compared using BLAST to a data
set containing all proteins from 224 prokaryotic genomes: (a) 24 archaebacteria and (b) 200 eubacteria. In each panel, individual genomes are
represented by columns and individual proteins by rows; numbers of proteins are indicated on the left and percentage amino-acid identity by the color
scale shown on the right. BLAST hits with an e-value � 10-20 and � 20% amino-acid identity were recorded. The percent identity of the best blast hit for
each human protein in each prokaryote was color coded as shown on the right and plotted with MATLAB©. The 31 proteins that were used in the
recent tree of life [9] are marked with ticks in column (c). A table containing the numbers, genes, and species underlying the figure is available as
additional data file 1.
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it shows eukaryotes as the sisters of archaebacteria and

eubacteria simultaneously (Figure 1e, inset 2). But Rivera

and Lake [55] did not force the data onto a tree; rather, they

looked to see whether the data were actually tree-like in

structure, and found that a directed acyclic graph (a ring)

represents the underlying evolutionary process linking

prokaryotes to eukaryotes better than a tree does. They

offered crisp arguments that endosymbiosis is the most

likely cause for the ring-like nature of the data.

But not everyone agrees that symbiosis was important in

eukaryote evolution. Some biologists, mainly from the

positivist camp, categorically reject the idea that eukaryotes

acquired many, or any, genes from endosymbionts, and

they scorn the notion that endosymbiosis had anything to

do with eukaryote origins [15,19,39]. An argument salient to

that view is the sweeping claim that endosymbiosis and

gene transfer from endosymbionts fails to account for the

evolution of any outstanding eukaryote characters [19],

such as the nucleus. A more optimistic view from the

microbialist camp is that the endosymbiotic origin of

mitochondria could have made a major contribution to the

genetic makeup of eukaryotes [58,59]. This could account

for the finding that operational genes of bacterial origin are

in the majority in eukaryote genomes [52]. The origin of

mitochondria could have even precipitated the origin of the

nucleus via the introduction of introns into eukaryotic

lineages [53]. The roles of LGT and endosymbiosis in

evolution have always been controversial. Genomes attest

that both processes are important [23], but neither can be

handled by strictly bifurcating trees as a means to represent

genome evolution.

Seeing the wood for the trees
The need to incorporate non-treelike processes into ideas

about microbial evolution has long been evident [57,60-63].

But mathematicians and bioinformaticians are just now

beginning to explore the biological utility of graphs that can

recover and represent non-treelike process that sometimes

underlie patterns of sequence similarity in molecular data

and patterns of shared genes. These approaches can involve

networks [64-67], rings [55], or simply tack inferred gene

exchanges onto trees [4,68,69]. These newer approaches aim

to recover and depict both the tree-like (vertical inheritance

through common descent) and the non-treelike (LGT and

endosymbiosis) mechanisms of microbial evolution. As such,

they represent important advances, because both mecha-

nisms are germane to the processes through which microbes

evolve in nature.

So, are we close to having a microbial tree of life [9]? Or are

we closer to rejecting a single tree as the null hypothesis for

the process of microbial genome evolution [1,54]? All in all,

the latter seems more likely, for if our search for the tree of

life delivers the tree of one percent, then we should be

searching for graphs and theories that fit the data better

than a single bifurcating tree.

Additional data file
Additional data file 1 is a table containing the numbers,

genes, and species on which Figure 2 is based.
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