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Anaerobic metabolic pathways allow unicellular organisms to tolerate or colonize anoxic environments. Over
the past ten years, genome sequencing projects have brought a new light on the extent of anaerobic metab-
olism in eukaryotes. A surprising development has been that free-living unicellular algae capable of photoau-
totrophic lifestyle are, in terms of their enzymatic repertoire, among the best equipped eukaryotes known
when it comes to anaerobic energy metabolism. Some of these algae are marine organisms, common in the
oceans, others are more typically soil inhabitants. All these species are important from the ecological (0,/
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Chlamydomonas CO, budget), biotechnological, and evolutionary perspectives. In the unicellular algae surveyed here,
Photosynthetic alga mixed-acid type fermentations are widespread while anaerobic respiration, which is more typical of eukary-
Metabolism otic heterotrophs, appears to be rare. The presence of a core anaerobic metabolism among the algae provides
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insights into its evolutionary origin, which traces to the eukaryote common ancestor. The predicted fermen-
tative enzymes often exhibit an amino acid extension at the N-terminus, suggesting that these proteins might
be compartmentalized in the cell, likely in the chloroplast or the mitochondrion. The green algae
Chlamydomonas reinhardtii and Chlorella NC64 have the most extended set of fermentative enzymes reported
so far. Among the eukaryotes with secondary plastids, the diatom Thalassiosira pseudonana has the most pro-
nounced anaerobic capabilities as yet. From the standpoints of genomic, transcriptomic, and biochemical
studies, anaerobic energy metabolism in C. reinhardtii remains the best characterized among photosynthetic

protists. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction: life without oxygen

Life without oxygen is common on Earth. Oxygen shortage in bio-
topes can result from geochemical or physical circumstances but also
from bacterial activities. Anoxia can be transient or protracted,
extending from diurnal periods to months or years or millennia or
more. Examples of diurnal anoxia include tidal zones [1,2], while ma-
rine oxygen minimum zones can remain anoxic for many years [3,4],
and seafloor brines [5] can remain anoxic for 50,000 years or more
[6]; all of these habitats harbor rich eukaryotic floras. Survival in an-
oxic habitats requires means of anaerobic energy metabolism,
which are far more varied in prokaryotes [7] than in eukaryotes [8].
This chapter will focus mainly on photosynthetic eukaryotes which
abound in anoxic environments [4,9], anaerobic energy metabolism

Abbreviations: ACS, acetate CoA synthetase; ACK, acetate kinase; ADHE, aldehyde/
alcohol dehydrogenase; ASCT, acetate:succinate CoA-transferase; ATP, adenosine 5’
triphosphate; PTA, phosphotransacetylase; PFL, pyruvate formate-lyase; PFL-AE, pyru-
vate formate-lyase activating enzyme; PFO, pyruvate:ferredoxin oxidoreductase; SLP,
substrate level phosphorylation
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in heterotrophic eukaryotes having been reviewed in depth recently
[8].

Whether in aerobic or anaerobic environments, the challenge of
staying alive means staying far from equilibrium, and that means
maintaining metabolic flux and redox balance. In anaerobic energy
metabolism, just as in aerobic metabolism, the generation of ATP en-
tails the accumulation of reduced cofactors such as NADH and FADH,
that are generated by catabolic pathways, usually glycolysis, and that
have to be reoxidized in a process that involves the transfer of elec-
trons to suitable acceptors that are then excreted by the organism
to sustain metabolic flux. Among eukaryotes, anoxygenic photosyn-
thesis has not been described, hence for eukaryotes, only two pro-
cesses are known to maintain redox balance and conserve energy
under anoxia: i) fermentations, which usually entail substrate level
phosphorylation (SLP), and ii) anaerobic respiration involving chemi-
osmotic coupling. In eukaryote respiration, electrons, usually stem-
ming from carbohydrates and lipids but sometimes from sulfide
[10,11], enter via NADH and FADH, the mitochondrial electron trans-
port chain, which is comprised of membrane proteins, the prosthetic
groups of which harbor increasingly positive potentials in the course
of electron flux towards the terminal acceptor. Electron flux serves to
establish an electrochemical gradient across the inner mitochondrial
membrane, resulting in a proton motive force that drives ATP
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synthesis. In anaerobic mitochondria, the terminal acceptor is not O-,
but is often fumarate [12]. Fermentations are processes in which the
terminal electron acceptor is generated by the cell through metabo-
lism. ATP is generated via SLP, where an intermediate contains a
high energy phosphate bond (usually a mixed anhydride) which is
used to phosphorylate ADP. SLP occurs with the help of soluble, rather
than membrane-associated, enzymes. In eukaryotes, some fermenta-
tion pathways entail the harnessing of chemiosmotic energy, for
example the reduction of endogenously generated fumarate to succi-
nate in the respiratory chain of some anaerobic mitochondria [8,13].
Overall, respiration and fermentation differ with respect to the
enzymes employed for cofactor reoxidation and the energy conserva-
tion processes involved.

The biochemistry of anaerobes has been far more extensively
studied in prokaryotes than in eukaryotes, probably because most of
what we know about eukaryotic energy metabolism stems from stud-
ies of multicellular organisms, the majority of which are specialized
towards oxygen as the terminal acceptor. Most multicellular eukary-
otes such as animals and plants can only withstand short periods of
anoxia. A few metazoans which withstand longer periods of anoxia
[1,8,12] or even total anoxia do exist, as the recently reported marine
sediment-dwelling animals Loriciferans indicate [6]. Most of the met-
abolic diversity in eukaryotes is found among unicellular species
(protists), among them parasites (many of which live in oxygen de-
prived environments) and photosynthetic organisms (microalgae),
which frequently encounter hypoxic or anoxic conditions in their
natural environments, e.g. soils, microbial mats, or marine and fresh-
water sediments.

Much effort has been devoted to the study of parasites with the
goal of identifying targets to develop specific treatments, and a com-
prehensive review on the anaerobic pathways in heterotrophic eu-
karyotes has been recently published [8]. Compared to medically
relevant parasites, our understanding of anaerobic energy metabo-
lism in photosynthetic eukaryotes has always been more limited.
This circumstance has changed somewhat over the last ten years,
with the growing interest in microalgae for biotechnological applica-
tions, for example the production of biofuels such as hydrogen and
hydrocarbons [14-18]. Here we provide an update on the knowledge
on the anaerobic metabolic routes occurring in unicellular green
algae. The significance/relevance of the compartmentalization for
some anaerobic pathways is considered as the evolutionary origin of
these pathways and the impact of phototrophy origins for anaerobic
pathways.

2. Microalgae in anaerobic environments

For photosynthetic algae anoxia is commonplace and often
transient. The oxygenation of their habitats, such as soils, fresh and
marine waters, is intricately linked to light intensity, the depth of
the waters, and to biotic activities. Low light can help to bring the
cells to hypoxia when O, production in plastids is outpaced by O,
consumption. Algal blooms also destabilize the ecosystems by atten-
uation of light and oxygen levels.

The metabolic responses of microalgae to anoxia have been the sub-
ject of examination for some time. Green algae, such as Chlamydomonas
reinhardtii, Chlamydomonas moewusii, Chlorogonoium elongatum, Chlo-
rella fusca, and Scenedesmus D3, ferment their plastidic starch to a
variety of end products including acetate, ethanol, formate, glycerol,
lactate, H, and CO, [19-23]. The algal heterofermentation patterns ob-
served clearly contrast with the lactate or ethanol homofermentation
of yeasts and multicellular organisms (plants, animals), while showing
some similarities to the mixed-acid fermentations common to enteric
bacteria [24] that lead to the excretion of partially oxidized metabolites
[25].

Typical for mixed-acid fermentations, the distribution of excreted
end products varies among the green algal species (and sometimes

among strains) and furthermore varies with environmental factors,
medium composition and carbon source. In C. reinhardtii, dark fer-
mentation leads to the production of formate, acetate and ethanol
in a 2:1:1 ratio [22,26]. In contrast, C. moewusii produced no formate
under dark anoxia; the major excreted products in these conditions
were acetate, glycerol and ethanol, and their relative amounts appear
to diverge between studies [21,27]. During fermentation, some green
algae produce hydrogen. H, evolution in the dark is low as compared
to that measured in the light [19,26]. The amount of H, produced
appears to be species-specific [22,27,28]. Skjanes et al. [29] have iden-
tified three green algal strains from brackish waters and marine hab-
itats (Chlamydomonas euryale, Chlamydomonas vectensis, cf Oocystis)
capable of producing H, anaerobically, indicating that this ability is
not restricted to freshwater species.

Rather than excreting the fermentation end-products of the an-
aerobic metabolism, some algae accumulate them. Under anaerobio-
sis, various Euglena gracilis species accumulate large amounts of
wax esters (C10-C18 fatty acids esterified with C10-C18 aliphatic al-
cohols), with a simultaneous net production of ATP [30]. The fatty
acids are synthesized in the mitochondrion, acetyl-CoA serving as
the terminal electron acceptor during carbohydrate oxidation. The
wax esters are not excreted but are deposited in the cytosol instead,
where they accumulate, constituting up to 65% of the protist's dry
weight in some strains [31]. Upon return to oxic conditions, the ali-
phatic chains can be converted once again to acetyl-CoA, which can
be oxidized to CO, in mitochondria or used to form paramylon re-
serves. Wax ester fermentation occurs in the mitochondria as a
malonyl-CoA independent synthesis of fatty acids [32]. In acid mine
drainage biofilms mainly constituted by Euglena mutabilis, large
amounts of wax esters have been detected [33].

Diatoms and dinoflagellates can survive in dark anoxic marine
sediments after sinking [34]. The sedimented diatoms were found to
contain high concentrations of nitrate that they accumulated from
sea water [35]. Recently, Kamp et al. [36] showed that the levels of ac-
cumulated nitrate and the diatom survival under dark/anoxic condi-
tions are correlated. The consumption of the intracellular nitrate
pool was furthermore correlated with excretion of ammonium, in
both benthic and pelagic species, suggesting that diatoms might ob-
tain the energy for cell survival by ammonium fermentation, as de-
scribed for the fungus Fusarium oxysporum [37].

Importantly, environmental sequencing has uncovered vast eu-
karyotic communities in anaerobic environments. Sequence analysis
of both nuclear (18S) and plastid (16S) ribosomal RNA clones revealed
a great variety of phytoplankton in marine (oxic and anoxic) samples
[4,9,38-42] and in freshwaters [43]. Most microalgae newly identified
in coastal and open-sea samples belong to known phylogenetic
groups, such as prasinophytes, haptophytes, dinoflagellates, crypto-
phytes, and diatoms [4,42,44-46]. Photosynthetic algae have also
been discovered in a variety of chemically extreme environments. In
natural rock acid drainages and acid mine drainages, characterized
by extreme acidity (pH ~2-3) and high heavy metal concentrations,
large eukaryote communities have been discovered in biofilms.
Among these eukaryotes, a surprising assortment of phototrophic
species was found, including chlorophytes (Chlamydomonas, Chlo-
rella, Dunaliella), rhodophytes (Galderia), euglenozoans and diatoms
(Navicula, Nitszchia) [47,48].

3. Enzymes of fermentation and anaerobic respiration
in eukaryotes

Especially among heterotrophs, glycolysis is the backbone of eu-
karyote carbon and energy metabolism, leading to the production of
pyruvate, ATP and NADH. The further fate of pyruvate can take
place not only in the cytosol and the mitochondria, but also in plas-
tids. In eukaryotes, the most common cytosolic fermentation process-
es to regenerate NAD" emanate from pyruvate, involving either
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ethanol fermentations via pyruvate decarboxylase (PDC, EC 4.1.1.1)
and alcohol dehydrogenase (ADH, EC 1.1.1.1) (typical of plants, cer-
tain animals and fungi), or lactate fermentations via lactate dehydro-
genase (LDH, EC 1.1.1.27) (typical of many eukaryotes, including
mammalian muscle). Alcohol and lactate fermentations are typical
pathways for dealing with short term anoxia, but some fish, carp for
example, can survive weeks in anoxia through ethanol fermentation
[49,50]. Among protists, pyruvate metabolism is typically more diver-
sified, including additional anaerobic pathways and enzymes that are
not present in higher animals. These pathways often localize to mito-
chondria or hydrogenosomes, anaerobic forms of mitochondria that
lack cytochromes and produce ATP fermentatively [8]. In algae, a
plastidic location for fermentative metabolism is also clearly invoked,
to which several recent studies bear witness [51,52].

In addition to simple fermentation processes, some facultative
anaerobic eukaryotes exhibit fermentation processes linked to the
mitochondrial electron transport chain, thereby generating a proton
gradient across the membrane [8]. This process is often referred to
as anaerobic respiration although the electron acceptor (fumarate)
is not obtained from the environment but from the cells' metabolism.

The range of ATP yields from glucose breakdown in eukaryotes is
modest [8]. The overall energetic differences between mitochondria
using oxygen as a terminal acceptor, or not, boil down to about a fac-
tor of six. Taking into account the costs of ADP-ATP exchange and
phosphate transport across the mitochondrial inner membrane, it
can be calculated that the complete oxidation of glucose via mamma-
lian mitochondria yields ~30 molecules ATP [53,54]. Eukaryotes with
anaerobic mitochondria gain, in addition to 2 ATP from glycolysis, 2
ATP per glucose through substrate level phosphorylations leading to
acetate and propionate production and about 1 additional ATP per
glucose from proton pumping at complex I using fumarate as the ter-
minal acceptor, making their overall energy yield about 5 ATP/glucose
[8,12,55]. Protists that contain hydrogenosomes, anaerobic forms of
mitochondria [56] best studied in the human parasite Trichomonas
vaginalis [57], obtain about 4 ATP per glucose: 2 from glycolysis and
1 ATP per pyruvate, which is fermented to H,, CO,, and acetate [8,58].

Eukaryotes such as Giardia intestinalis [ 59] that possess mitosomes —
highly reduced forms of mitochondria with no direct role in ATP synthe-
sis [60,61] - satisfy their energy needs from cytosolic fermentations that
deliver 2 ATP per glucose from glycolysis and somewhere between
0 and 1 additional ATP per pyruvate, depending upon environ-
mental conditions. Although Giardia does not grow in the presence
of atmospheric oxygen levels, low levels of oxygen allows Giardia to
maintain redox balance with the help of cytosolic NADH oxidases
that do not conserve energy but allow it to metabolize pyruvate to ace-
tate, which yields one ATP per pyruvate [8]. If no oxygen is available,
they rely on pyruvate metabolism to maintain redox balance, excreting
ethanol with no additional ATP gain. Thus, eukaryotes with mitosomes
obtain 2-4 ATP/glucose, depending on the environmental condi-
tions [8]. Pure ethanol fermentations that entail no energy conservation
from pyruvate metabolism, such as in yeast, which can ferment indefi-
nitely, or carp, which can survive months of complete anoxia [50], deliv-
er 2 ATP/glucose. From this, it is evident that differences among
eukaryotes with respect to energy yield, end products and underlying
enzymes concern the metabolic fate of pyruvate. It should also be men-
tioned that some eukaryotes have no bona fide energy metabolism at all,
namely the energy parasites, such as some microsporidians, that steal
ATP from their host cells via ADP/ATP carriers in their plasma mem-
brane [62].

3.1. Conversion of pyruvate into acetyl-CoA by PFO and PFL

In typical aerobic mitochondria, the conversion of pyruvate
into acetyl-CoA is catalyzed by pyruvate dehydrogenase (PDH), a
multi-subunit complex, and the resulting acetyl-CoA is typically oxi-
dized to CO, through the citric acid (TCA) cycle, yielding ATP, NADH

and FADH,. PDH can also function in some anaerobic mitochondria,
for example during malate dismutation in Fasciola (liver fluke) mito-
chondria [12,13] or during wax ester fermentation in Euglena [31,63].
More typical of many prokaryotic and eukaryotic anaerobes is pyru-
vate oxidation via pyruvate:ferredoxin oxidoreductase (abbreviated
PFO or PFOR, sometimes PFR; E.C. 1.2.7.1) generating CO,, acetyl-
CoA and two electrons. These two electrons are then transferred via
three [4Fe4S] clusters to the final electron acceptor, either a ferredox-
in (FDX) or a flavodoxin [64]. Like PDH, PFO belongs to a large family
of enzymes which depend on the cofactor thiamine pyrophosphate
(TPP) for the cleavage of the carbon-carbon bond linking the carbon-
yl and carboxyl groups of pyruvate [65]. In some anaerobic autotro-
phic prokaryotes though PFO functions in the reverse direction,
i.e. as pyruvate synthase [66]. Except the PFOs from Desulfovibrio spe-
cies [67], all the other PFOs studied so far are readily inactivated by
oxygen. PFO activity in eukaryotes was first discovered in the
hydrogenosomes - Hp-producing forms of mitochondria - of tricho-
monads [68]. Subsequent studies have found PFO in anaerobic para-
sites from distinct lineages [69,70]. PFO has been extensively
studied because it is the target for metronidazole, the current treat-
ment against many anaerobic protistan parasites of humans [71].

An alternative form of PFO has been described in eukaryotes
which is a fusion protein consisting of a PFO domain at its N-
terminus and an NADPH-cytochrome P450 reductase domain at its
C-terminus [72,73]. This pyruvate:NADP* oxidoreductase (PNO) de-
carboxylates pyruvate to acetyl-CoA while transferring electrons to
the flavoprotein domain to reduce NADP™. PNO was first described in
E. gracilis [74] and has since been found in apicomplexan parasites
[72] and various eukaryotic heterotrophic lineages [70,73,75]. In
Euglena, the enzyme localizes to mitochondria [74] whereas in the
heterotrophic stramenopile Blastocystis, PNO is found in the organism's
anaerobic mitochondrion [73].

In addition to PFO, there is another route of pyruvate breakdown
to acetyl-CoA that operates in various prokaryotes and a few eukary-
otic lineages, that is pyruvate formate-lyase (PFL; EC 2.3.1.54)
[76-78]. PFL uses a radical-based homolytic mechanism to convert
pyruvate into acetyl-CoA and formate [79]. PFL is activated post-
translationally by the introduction of a free-radical, a reaction cata-
lyzed by an iron-dependent activating enzyme (PFL-AE; EC 1.97.1.4)
which requires the cofactor S-adenosyl methionine (SAM) as well as
a reduced ferredoxin (or flavodoxin) [79-81]. PFL is irreversibly
inactivated by hypophosphite, a formate analogue [82]. Like PFO,
PFL is extremely sensitive to oxygen. The radical-containing enzyme
is irreversibly inactivated by oxygen via oxygenolytic cleavage at
the glycine radical [79]. In some bacteria such as Escherichia coli spe-
cies the iron-dependent aldehyde/alcohol dehydrogenase ADHE plays
the role of PFL-deactivase by removing the radical on PFL [83]. Based
upon current sampling, it appears that PFL is more widespread than
PFO/PNO in photosynthetic protists, in contrast to heterotrophic pro-
tist in which PFL is less common than PFO [8].

3.2. Iron-only hydrogenase

Hydrogenases function to dispose of excess electrons accumulated
during fermentation or to extract electrons from hydrogen for the re-
duction of substrates in energy-yielding processes. Different classes of
hydrogenases have been identified based on their metal content
(FeFe, NiFe, NiFeSe, FeS-free) [84-86]. Hydrogenases are very wide-
spread among prokaryotes while among eukaryotes, they have so
far only been found in unicellular species, including parasites and
photosynthetic algae [8,28]. All eukaryotic hydrogenases character-
ized so far belong to the class of Fe-only ([FeFe]|) hydrogenases in
which the [4Fe4S] cluster is linked through a cysteine residue to a
[2Fe2S] cluster [87,88]. In most H,-producing heterotrophic eukary-
otes studied to date, the electrons arising from pyruvate oxidation
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by PFO are transferred to a ferredoxin, and subsequently to hydroge-
nase [8].

Even though it is not known yet to occur among eukaryotes, there
is a new and exciting aspect to [FeFe| hydrogenase function in pro-
karyotes that deserves mention: electron bifurcation. Schut and
Adams [89] found that the [FeFe]-hydrogenase of Thermotoga
maritima generates H, with one electron coming from reduced ferre-
doxin via a [2Fe2S] cluster containing subunit and one electron com-
ing from NADH via a flavoprotein subunit. This allows Thermotoga to
generate Hj in part from NADH, which is a thermodynamically unfa-
vorable reaction; but by coupling it to the oxidation of a low potential
reduced ferredoxin, the overall reaction (H, production) becomes
thermodynamically favorable and goes forward. This is potentially
relevant for eukaryotic [FeFe] hydrogenase, because the correspond-
ing [2Fe2S] cluster-containing and flavoprotein subunits are found
in eukaryotes and have furthermore been found in association with
the [FeFe] hydrogenase catalytic subunit [8]. Electron bifurcation
[90] is being found in many prokaryotic anaerobes (reviewed by
Buckel and Thauer in this volume), and it is possible that it occurs
in eukaryotes as well, with the reaction catalyzed by [FeFe] hydroge-
nase being a candidate.

3.3. Aldehyde/alcohol dehydrogenase (ADHE)

Acetyl-CoA produced from pyruvate (either by PDH, PFL or PFO)
can be used to generate ATP from ADP by conversion to acetate (see
below) or to maintain redox balance by conversion to ethanol. In
bacterial mixed-acid fermentations, ethanol is typically produced via
bifunctional aldehyde/alcohol dehydrogenase (ADHE or ADH1) [25].
This enzyme combines a coenzyme A-dependent acetaldehyde dehy-
drogenase (N-terminal half) and a Fe-dependent alcohol dehydroge-
nase (C-terminal half). ADHE is a common enzyme among bacteria
where it plays a key role under anaerobic conditions by regenerating
reducing power and CoASH [83,91,92]. Among eukaryotes, the
protein has been found in anaerobic parasites such as Giardia [93],
Entamoeba [94] and in a non-parasitic rumen inhabitant, the
chytridiomycete Piromyces sp. E2 [95] where it participates in core
carbon metabolism. An ADHE has also been identified in two evolu-
tionary related unicellular algae, the green alga C. reinhardtii and its
colorless relative Polytomella sp. [96,97].

3.4. Substrate-level phosphorylation (SLP)

In substrate level phosphorylations, a phosphate group in a high
energy bond is harnessed to phosphorylate ADP via soluble enzymes
without the help of electrochemical gradients. In eukaryotes,
acetyl-CoA produced by either PFL or PFO (see above) can be
converted into acetate to produce ATP via substrate level phosphory-
lation; at present, three different routes for this SLP are known [98].
The first route is the ASCT cycle, which involves two enzymes: an
acetate:succinate CoA-transferase (ASCT; EC 2.8.3.8) which transfers
the CoA moiety of acetyl-CoA to succinate, and a succinyl-CoA synthe-
tase (SCS or STK; EC 6.2.1.5) which converts succinyl-CoA back into
succinate. The ASCT reaction converts one thioester into another. In
the SCS reaction, the energy in the thioester bond of succinyl-CoA is
conserved via phosphorolysis to generate succinyl phosphate as a re-
action intermediate, the mixed anhydride bond of which directly
phosphorylates ADP to ATP [99]. The ACST reaction can be catalyzed
by three different types of ASCT proteins (ASCT subfamilies 1A, 1B,
1C) which share little sequence homology [98]. The ASCT cycle is
present in some hydrogenosome-containing eukaryotes and in anaer-
obic mitochondria [8]. In the second route, concomitant production of
acetate and ATP from anaerobically produced acetyl-CoA is catalyzed
by a single enzyme, the ADP-forming acetyl-CoA synthetase
([ADP]-ACS). Among eukaryotes, this enzyme has been characterized
in Entamoeba [100] and in Giardia [101]. A third route of anaerobic

production of ATP from acetyl-CoA involves the sequential action of
phosphotransacetylase (PTA or PAT; EC 2.3.1.8) and acetate kinase
(ACK or AK; EC 2.7.2.15). The ACK-PTA pathway, well-known
among prokaryotes [25], has so far only been found in the photosyn-
thetic alga C. reinhardtii [97,102]. Of these three SLP pathways, which
conserve the energy in the thioester bond of acetyl-CoA, the ASCT
cycle involving the Krebs cycle enzyme succinyl-CoA synthetase,
appears to be the most common among heterotrophic eukaryotes
studied so far.

3.5. Anaerobic respiration

Respiration is the use of a terminal electron acceptor that is
obtained from the environment. The respiratory process involves
the passage of electrons through an electron transport chain, creating
an ion gradient (usually a proton gradient) across the membrane that
is further used for ATP synthesis and transport processes. Anaerobic
respiration is common place among prokaryotes, which can use a
great diversity of environmentally available terminal acceptors for
ATP synthesis and which respire across their plasma membrane, eu-
karyotes across their inner mitochondrial membrane [103]. Anaerobic
respiration appears to be comparatively rare in eukaryotes, based on
present sampling [12].

Malate dismutation is a process that allows some multicellular
eukaryotes such as lower marine animals (mussels, oysters) and par-
asitic helminths (Ascaris suum, Fasciola hepatica) to survive in anaer-
obic environments [12]. In this process, glucose is degraded to
phosphoenolpyruvate which is subsequently reduced to malate by
cytosolic malate dehydrogenase, thereby reoxidizing the glycolytic
NADH. The produced malate is further metabolized inside mitochon-
dria. To maintain redox balance, some of the malate is oxidized and
some is reduced (dismutation). Malate oxidation to acetyl-CoA oc-
curs via malic enzyme (ME) and PDH. The CoA group from the
acetyl-CoA is then transferred to succinate by an acetate:succinate
CoA transferase, yielding acetate and succinyl-CoA. Regeneration of
CoASH allows ATP production through SLP via the ASCT cycle (see
above). Malate reduction to succinate occurs in two steps that re-
verse part of the Krebs cycle, with fumarate as intermediate. Fuma-
rate reduction which involves a membrane-bound fumarate
reductase and a quinone - typically a rhodoquinone - is also linked
to the mitochondrial electron transport chain via complex I and
FoF{-ATP synthase [104]. Rhodoquinone is a quinone essential for
fumarate reduction as it occurs in some bacteria (such as
Rhodospirillum rubrum), and it is also essential for fumarate reduc-
tion during malate dismutation in eukaryotic species that possess
anaerobic mitochondria. The pathway of rhodoquinone synthesis,
however, appears to be different in R. rubrum compared to eukary-
otes as in R. rubrum rhodoquinone synthesis proceeds from ubiqui-
none, whereas this is not the case in eukaryotes [105-108], and
A.G.M.T., unpublished observations]. Compared to fermentation, ma-
late dismutation conserves more energy out of the same substrate
(phosphoenolpyruvate).

4. Chlamydomonas is the most flexible eukaryotic fermenter so far

C. reinhardtii is a unicellular green alga found in freshwaters and
wet soils around the globe. This alga has become a model organism
to study photosynthesis and chloroplast biogenesis [109,110], nutri-
ent deprivation [111-115] as well as assembly and function of flagella
[116-118]. The ability of C. reinhardtii to survive under anoxia has
long been known [22,26], with interest renewed following the release
of its nuclear genome sequence in 2007 [119]. Metabolic pathways
predicted from physiological studies [22] could be confirmed while
unexpected routes were also uncovered [97,120,121]. Among the sur-
prises was the extended array of routes for pyruvate stemming from
starch breakdown (Fig. 1). In Chlamydomonas, pyruvate can be
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metabolized to ethanol via a PDC-ADH pathway or to lactate via LDH.
But pyruvate can also be converted into acetyl-CoA by a pyruvate
formate-lyase or a pyruvate:ferredoxin oxidoreductase. The existence
of a PFL in C. reinhardtii had been proposed earlier based on the
inhibition of its formate production by sodium hypophosphite [22].
In contrast, the occurrence of a PFO had not been predicted from
experimental approaches.

Microarray studies and RT-PCR have been largely used to unravel
the metabolic routes used by the alga to adapt to anoxic atmosphere
[122-124]. Although these studies have pinpointed various genes,
among them genes for fermentative enzymes, it quickly became
clear that there was no strict correlation between transcript levels
and protein levels or enzyme activity [123,125]. Furthermore, most
of these RNA analyses were carried out on cells experiencing anoxia
in a medium which contains solely potassium phosphate and magne-
sium chloride (AIB medium) [126]. The cells resuspended in this
medium also face nutrient and carbon source deprivation.

Current approaches to understanding the anaerobic metabolism of
Chlamydomonas entail a multi-faceted approach: i) the study of cells
exposed to different anoxic conditions (light vs. darkness, cell
resuspension medium), ii) the production of mutant strains deficient
in fermentative enzymes, iii) enzymatic characterization of these
enzymes, iv) mass spectrometry analyses and v) studies to determine
the intracellular localization of the fermentative enzymes, as most of
them exhibit an extended N-terminus as compared to their bacterial
counterparts, suggesting organellar (chloroplast or mitochondrial)
localization.

c¢DNAs for PFL and its activating enzyme PFL-AE have been se-
quenced, revealing the relationship to bacterial enzymes, including
to the well-studied enzyme of E. coli [97,123]. When complemented
with the C. reinhardtii PFL, E. coli cells deficient in pfl were shown to
produce formate, demonstrating that the algal enzyme was synthe-
sized and post-translationally activated in E. coli [123]. Algal strains
deficient in PFLs have been recently produced by insertional muta-
genesis in two different research laboratories [52,127]. The lack of
PFL activity in these mutants led to a rerouting of dark anaerobic me-
tabolism, with an increased production of lactate, ethanol and CO,
and a lowered production of acetate [52,127]. Immunoblot experi-
ments and mass spectrometry data have provided evidence for the
dual localization of the PFL in the chloroplast and mitochondrion
[97,102] (Fig. 1). It remains to be ascertained that the enzyme is in-
deed active in both cell compartments, as the intracellular localiza-
tion of PFL-AE is currently unknown.

A gene encoding a PFO that is homologous to PFO from other eu-
karyotes was detected in the Chlamydomonas genome [97,121].
C. reinhardtii PFO expressed in E. coli catalyzes the oxidative decar-
boxylation of pyruvate, in a CoASH- and TPP-dependent manner;
this activity is highly sensitive to oxygen (van Lis et al. in prepara-
tion), like most bacterial and parasite PFOs [128]. Early work indicat-
ed compartmentation of enzymes involved in pyruvate breakdown
[129]. The identification of tryptic peptides specific to the PFO in chlo-
roplast fractions but not in mitochondrial fractions of anaerobic

C. reinhardtii cells [102], suggests that the enzyme is chloroplast
localized. This localization is also supported by immunoblotting
experiments (van Lis et al. in preparation) (Fig. 1).

C. reinhardtii is able to produce H, after anaerobic adaptation in the
light or in the dark [22,23,130]. The metabolic function of the H, pro-
duction in the alga seems to be redox balance in the absence of O,. C.
reinhardtii possesses two [FeFe] hydrogenases, HYDA1 and HYDA2,
which both exhibit the minimal structure for [FeFe] hydrogenases
[131-134]. HYDA1 and HYDA2 localize to the chloroplast, where they
can independently catalyze H, production in the light and in the dark
[135]. In light, HYDAL is coupled to the reducing site of the photosyn-
thetic electron transport chain (PSII or NADH:Q oxidoreductase) and
accepts electrons from FDX1 (petF) [136-138]. From the analysis of
the interaction between FDX and HYDA1, Winkler et al. [139] conclud-
ed that among the six known chloroplast [2Fe2S] ferredoxins (FDX1-
FDX6), FDX1 appears as the most efficient electron mediator to hy-
drogenase(s). It is thought that in C. reinhardtii PFO is the source of
electrons to hydrogenases in the dark, as in the case of heterotrophic
unicellular eukaryotes [8]. Studies of the dark fermentation products
excreted by a C. reinhardtii mutant strain deficient in hydrogenase ac-
tivity, obtained by disruption of the HydEF gene that encodes a hydrog-
enase maturation protein, revealed an increased production of
succinate [124]. In the alga several metabolic routes can potentially
lead to the anaerobic production of this organic acid [124], including
a pathway common among heterotrophic eukaryotes and that involves
a phosphoenolpyruvate carboxykinase (PCK), a malate dehydrogenase
(MDH), a fumarate hydratase (FUM) and a soluble fumarate reductase
(FRD) [8] (Fig. 1).

Acetyl-CoA produced by PFL or PFO can be used by either ADHE,
allowing the reoxidation of glycolytic NADH, or by the consecutive action
of a PTA and an ACK, to generate ATP. Together with formate and acetate,
ethanol is one of the major products excreted by C. reinhardtii exposed to
dark anoxia [22,23,26,122]. The existence of a CoA-acetylating aldehyde
dehydrogenase activity in the photosynthetic alga, similar to that found
in facultative bacteria or parasites, was suggested by earlier studies [129]
and subsequently confirmed by the isolation of its cDNA [97]. When ex-
posed to dark anaerobiosis in AIB medium, an Adhe insertional mutant
does not excrete ethanol [140], suggesting that in these conditions,
ADHE is the main enzyme involved in ethanol production, as in bacterial
mixed-acid fermentations. Comparative proteomic studies [102] and im-
munoblot experiments [R. van Lis, unpublished results] support a chloro-
plast localization of this enzyme.

Chlamydomonas possesses two sets of genes for phospho-
transacetylase and acetate kinase, likely resulting from gene duplica-
tion events. These PTA-ACK pathways could participate in anaerobic
ATP synthesis when cellular energy demands increase, but they
could also be involved in acetate assimilation. From proteomic analy-
sis of organelle-enriched samples, it was inferred that PTA1-ACK2
constitutes a mitochondrial route while PTA2-ACK1 constitutes a
chloroplast pathway [97,102] (Fig. 1).

Production of algal mutants has revealed an even more diverse
spectrum of fermentation end products, including alanine [52] and

Fig. 1. Schematic representation of the dark anaerobic energy metabolism in Chlamydomonas reinhardtii. The multiplicity of the metabolic routes that can be used when exposed to
dark anoxia has been revealed by physiological and biochemical studies on wild-type and mutant strains. For most enzymes, subcellular localization was based on previous studies
[51,97,102,124,169]. The mitochondrial localization of the fumarate reductase (FRD) is based on targeting prediction by PredAlgo [170]. Although Pck transcript levels were previ-
ously reported not to increase upon dark anoxia [124], PCK is included in the scheme since different experimental conditions could easily show a different picture. Also, transcript
levels do not necessarily translate to enzyme levels or activity. Enzymes that have multiple isoforms and for which no clear location is known or multiple locations of the different
isoforms are envisioned, were fit in to serve best schematic continuity (PPDK, ACS, MDH). The different metabolites/redox sinks and/or excreted fermentation products identified so
far are highlighted in blue. Acetate is mostly incorporated into growth media for C. reinhardtii, and its assimilation by ACS necessitates ATP and produces AMP and pyrophosphate
(PP;). PP;-dependent PPDK could be engaged instead of pyruvate kinase and yield 4 ATP instead of 2 with the concerted action of adenylate kinase (2 ADP— ATP + AMP). In
Arabidopsis and in rice, PP;-dependent enzymes were reported to be likely involved in anoxia tolerance [171]. Enzyme abbreviations are: ACK, acetate kinase; ACS, acetyl-CoA
synthase; ADH, NAD-dependent alcohol dehydrogenase; ADHE, aldehyde/alcohol dehydrogenase; ALAT, alanine aminotransferase; FDX, ferredoxin; FRD, soluble fumarate reduc-
tase; FUM, fumarate hydratase; GPP, glycerol-3 phosphatase; GPDH, glycerol-3-phosphate dehydrogenase; HYDA, Fe-only hydrogenase; LDH, lactate dehydrogenase; MDH, malate
dehydrogenase; ME, malic enzyme; OPPP, oxidative pentose phosphate pathway; PCK, PEP carboxykinase; PDC, pyruvate decarboxylase; PEPC, PEP carboxylase; PFL, pyruvate
formate-lyase; PFO, pyruvate:ferredoxin oxidoreductase; PPDK, pyruvate phosphate dikinase; PTA, phosphotransacetylase; PYC, pyruvate carboxylase.
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glycerol [140]. These alternative routes are depicted in Fig. 1. Alanine
remained as a metabolite, which is very common in anaerobic metab-
olism among animals [12], while the other fermentation products are
excreted. Progress on Chlamydomonas fermentative pathways and
metabolic plasticity continues, but the metabolic switches and the in-
terplay between the multiple metabolic routes are yet obscure.

5. Genome survey/metabolic data of the anaerobic metabolic
routes found in photosynthetic algae

Eukaryotic photosynthesis arose more than one billion years
ago when a heterotrophic host engulfed a cyanobacterial ances-
tor [141,142]. Following this primary endosymbiotic event, the
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cyanobacterium underwent genome reduction and genetic integra-
tion within the host genome via gene transfer to the nucleus [143].
Once the endosymbiont was integrated within its host, three major
lineages diverged, the green algae (and their land plant relatives),
red algae, and glaucophytes [144]. Subsequent rounds of secondary
endosymbioses took place, in which red or green algae were engulfed
and retained by eukaryote hosts thereby transferring photosynthesis
to other eukaryotic lineages. Many algal lineages have acquired their
plastids thus through secondary and tertiary endosymbiosis
[141,145]. At present seven distinct eukaryotic groups that harbor
plastids derived from secondary endosymbiosis have been identified:
euglenophytes, chlorarachniophytes, haptophytes, stramenopiles,
cryptophytes, dinoflagellates and apicomplexans [145] (Fig. 2).

Experimental studies conducted to reveal the anaerobic potential-
ities of unicellular eukaryotic phototrophs are so far limited, mainly
carried out on green algae (chlorophytes), such as Chlamydomonas
and Chlorella. Another approach to learn about the anaerobic meta-
bolic abilities of these algae is via surveys of genome sequences. At
the time of writing, 17 algal genome sequences were publicly avail-
able (see Table 1). These genomes are of species that can be cultured
in the laboratory, but which are not necessarily the most
representative, especially with regard to anaerobic metabolism. Nev-
ertheless, as detailed below, this algal genome sample brings a new
light on the extent and diversity of the anaerobic energy metabolism
among photosynthetic algae.

5.1. PFL/PFL-AE system

Hypophosphite inhibition of anaerobic formate production, indicat-
ing PFL pathways, had been reported earlier for various green species
such as C. reinhardtii, Chlorella vulgaris, Chlorogonium and Scenedesmus
[22,146]. The genome survey indicates that the PFL/PFL-AE system is
widespread among the chlorophytes, with the identification of PFL/
PFL-AE genes in Chlorophyceae (Chlamydomonas), Trebouxiophycea
(Chlorella NC64) and in Prasinophyceae (Ostreococcus, Micromonas),
marine algae characterized by a compact genome and a minimal cellu-
lar organization [147-149] (Table 1; Fig. 2). The PFL/PFL-AE system is
also encoded in the glaucophyte Cyanophora paradoxa.

Among the algae that possess secondary plastids, genes for a PFL/
PFL-AE system are present in the chlorarachniophyte Bigelowiella
natans, where PFL is 63% identical to C. reinhardtii PFL. In the marine
centric diatom Thalassiosira pseudonana genes for two sets of PFL/
PFL-AE are present (Fig. 3). These genes likely result from a duplica-
tion event as the PFLs share 94% sequence identity, and the PFL-AE
76% of identity. Thalassiosira PFL and PFL-activating enzyme share
54-55% sequence identity with their counterparts in Chlamydomonas.

5.2. PFO/PNO

The ability to perform oxidative decarboxylation by PFO, or its al-
ternative form PNO, is encoded in diverse algal lineages (Table 1;
Fig. 2). PFO genes are present in the chlorophytes Chlamydomonas
and Chlorella, and in the diatom Thalassiosira. The predicted Chlorella
PFO exhibits 57% sequence identity with Chlamydomonas PFO, and is
likely to be compartmentalized as it exhibits an N-terminal extension.
Thalassiosira PFO shares 46% sequence identity with its counterparts
in Chlamydomonas and Chlorella. PNO genes are found in the
glaucophyte Cyanophora paradoxa [150], in the euglenid E. gracilis
[72,151,152], in the apicomplexan Cryptosporidium parvum [72] and
in the cryptophyte Guillardia theta. The lack of an extended
N-terminus in G. theta PNO suggests that the enzyme is cytosolic.
Three of the surveyed algae, Chlamydomonas, Chlorella NC64, and
Thalassiosira, contain the two enzymatic systems capable of the an-
aerobic conversion of pyruvate into acetyl-CoA, namely PFO and
PFL. The co-occurrence of both routes has not been reported in para-
sitic eukaryotes so far.

5.3. Hydrogenases

Genes for iron-only hydrogenases have been identified in many
algal species. The first sequences of algal HYD obtained were from the
green algae Scenedesmus obliquus [153] and Chlamydomonas [131].
These enzymes were unique as they represented the smallest form of
[FeFe]-HYD known, comprising only the cluster H, in contrast to bacte-
rial enzymes which exhibit additional clusters on the N-terminal side of
the protein. With the release of the genome sequence of Chlorella
variabilis NC64A and the identification of two hydrogenases (HYDAI,
HYDAZ2), a novel structure for algal [FeFe]-hydrogenases was uncovered
as they exhibited an N-terminal F-cluster domain [28]. Chlorella HYDAs
are as sensitive to O, as the Chlamydomonas HYDs [28], therefore ruling
out the hypothesis that the F-cluster could protect the enzyme from
oxygen inactivation. All the chlorophyte HYD sequences exhibit a tran-
sit peptide sequence which likely target the enzyme to the chloroplast,
as it is the case for Scenedesmus or Chlamydomonas [28,131]. The matu-
ration proteins HydEF and HydG required for the assembly and inser-
tion of metal clusters in [FeFe]-hydrogenases were initially discovered
in C. reinhardtii [ 154]. In Cyanophora, hydrogen metabolism is predicted
from the identification of genes for HYDA and its maturation factors
[150] (Table 1). The rhodophytes Porphyridium and Porphyra were
found to perform reduction of CO, with hydrogen as electron donor
under low light (photoreduction) [155]. Among the algae with second-
ary plastids, Thalassiosira is so far the only member that contains a gene
encoding a typical [FeFe]-hydrogenase, but as noted before [86], the
genes for the maturation factors HydEF and HydG have not been
found in its genome (Table 1).

5.4. ADHE

Aldehyde/alcohol dehydrogenase is found in several algal lineages
(Table 1; Fig. 2), including two chlorophytes Chlamydomonas and
C. variabilis NC64. While Chlamydomonas possesses one gene, Chlorel-
la exhibits two distinct Adhe genes which encode enzymes sharing
65% sequence identity. The predicted proteins share 64% sequence
identity with C. reinhardtii ADHE. Genes for ADHE are found in several
lineages with secondary plastids. In G. theta, two isoforms of ADHE
are predicted which differ mostly in their N-terminal sequence.
These enzymes share 49% sequence identity with their closest bacteri-
al counterparts Thermosynechoccocus and Clostridium acetobutylicum,
and 45% with their counterpart in Chlamydomonas. In B. natans, the
ADHE exhibits 42% amino acid sequence identity to its counterpart
in Chlamydomonas, and it is predicted to be organellar as it has an ex-
tended N-terminus. The presence of an ADHE in Chromera veila, a pho-
tosynthetic alveolate closely related to apicomplexan parasites [156],
is also inferred from ESTs [157].

5.5. Energy conserving acetate metabolism

The majority of the algae surveyed here exhibit at least one of the
three systems for substrate-level phosphorylations involving acetate
known in eukaryotes ([98]; see Section 3.4). Therefore it seems that
these algae possess a metabolic route for ATP synthesis to contribute
to the cell's viability in anaerobic environments. Chlorella possesses a
gene encoding a putative acetate:succinate CoA-transferase which
shares 40% sequence identity with that of Fasciola hepatica (ASCT-
subfamily 1B). Genes for an ASCT are also present in the genome of
the diatoms Thalassiosira and Phaedodactylum. Predicted diatom
ASCTs share up to 47% sequence identity with the mitochondrial
ASCT from kinetoplastids (Trypanosoma species), which belong to
the subfamily 1A [98].

The Thalassiosira genome also encodes a gene for a putative
acetyl-CoA synthetase (ADP forming) (Table 1; Fig. 3). The predicted
protein exhibits 36% amino acid sequence identity with the enzyme
from Giardia lamblia which has been studied in detail [101]. Unlike
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as in Fig. 1.

its parasite counterpart, the diatom ACS exhibits an N-terminal ex-
tension, suggestive of an organellar localization (Fig. 3). In three
other diatoms, incomplete DNA sequences suggest that an ACS
(ADP-forming) might also be present.

Ack and Pta genes have also been identified in several algal line-
ages with secondary plastids, including the cryptophytes, the
haptophytes, and the chlorarachniophytes (see Table 1), suggesting
that a PTA-ACK route for anaerobic ATP production (or assimilation
of acetate) might occur in these algae as in Chlamydomonas.

5.6. Glycerol as an end product

Glycerol is usually a minor product of dark fermentation of green
algae [22,26]. However, Chlamydomonas can excrete significant amounts
of glycerol; this was observed in conditions where the ADHE route is
blocked [140]. The typical route to glycerol formation is a two-step reac-
tion involving the reduction of the glycolytic intermediate dihydroxyac-
etone phosphate to glycerol-3-phosphate, by an NAD*-dependent
glycerol-3-phosphate dehydrogenase (GDPH), followed by the hydroly-
sis of the glycerol-3-P by a glycerol-3-phosphatase (GPP) (Fig. 1). This
pathway which allows the reoxidation of glycolytic NADH is known in

some heterotrophic anaerobic eukaryotes such the parasitic protist
T. vaginalis [8]. The potential for glycerol production is expected to be
widespread among algae as genes for GPDH and GPP are found in various
algal lineages, such as Cyanidioschyzon merolae, Thalassiosira and G. theta.

5.7. Anaerobic respiration

The anaerobic respiratory pathways that have been found among
eukaryotes so far occur in heterotrophic species [12]. An exception
is Euglena, whose wax ester fermentation is thought to involve the re-
spiratory chain [158] with the rhodoquinone-dependent reduction of
fumarate to succinate being coupled to the mitochondrial electron
transport chain [159]. Benthic or pelagic diatoms species can accumu-
late high concentrations of nitrate. Kamp et al. [36] recently showed
that under dark anaerobic conditions, nitrate consumption followed
ammonium production. They proposed that nitrate might be respired
to ammonium via an anaerobic biochemical route known as ammoni-
um fermentation. In Fusarium, nitrate reduction to nitrite and the
subsequent reduction of nitrite to ammonium are thought to entail
ATP synthesis via substrate-level phosphorylation only [37] or possi-
bly via respiration and electron transport phosphorylation in addition
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Distribution of genes involved in anaerobic energy metabolisms among unicellular photosynthetic eukaryotes as inferred from genome survey. BLASTP and TblastN searches on
NCBI whole genome databases and/or on the website of each given alga were performed to identify the genes encoding fermentative enzymes. Homology to the different enzymes
was determined using an E value cutoff of less than 10~ '° using either the C. reinhardtii sequences or other eukaryotic ones and at least 80% coverage.

F/B/M Condition Reference PFL  PFL-AE PFO/PNO HYDA HydEF HydG ADHE ACK PTA ASCT® [ADP]-ACS®

Primary plastids
Chlorophytes

Chlamydomonas reinhardtii F Genome DOE JGI oS PFO® pod e < < ol ped -

Chlorella NC64 F Genome DOE JGI S PFO¢ pod e o ped ped pad o qge L

Coccomyxa sp. C-169 F Genome DOE JGI - - - - - - - Id s <o- -

Ostreococcus tauri M Genome DOE JGI e g - - - - - - - - -

Ostreococcus lucimarinus M Genome DOE JGI g < - - - - - - - - -

Micromonas pulsilla CCMP1545 M Genome DOE JGI I I - - - - - - - - -

Micromonas sp. strain RCC299 M Genome DOE JGI - - - - - - - - - - -
Glaucophytes

Cyanophora paradoxa F Genome fragment Project® ol PNO w4 I I - I ? 1B <
Rhodophytes

Cyanidioschyzon merolae F Genome Project” - - - - - - - - - - - -
Secondary plastids
Euglenophytes

Euglena gracilis F/B ESTs NCBI ? ? PNO¢ ? ? ? ? ? ? ? ?
Chlorarachniophytes

Bigelowiella natans M Genome DOE JGI I I - - - - < I s 1A -
Cryptophytes

Guillardia theta M Genome DOE JGI - - PNO - - - ol e o -
Haptophytes

Emiliania huxleyi M Genome DOE ]GI - - - - - - - < 1A¢ -
Stramenopiles

Aureococcus anophagefferens M Genome DOE JGI - - - - - - - - - - 8

Fragilariopsis cylindrus M Genome DOE JGI - - - - - - - - - 1B“#

Phaedodactylum triconutum M Genome DOE JGI - - - - - - - I - 1A¢ e

Pseudo-nitzschia multiseries CLN-47 M Genome DOE JGI - - - - - - - - - - e

Thalassiosira pseudonana M Genome DOE JGI sl PFO ~ - - - - - 1A <
Apicomplexans

Chromera velia M ESTs NCBI [157] ? ? ? ? ? ? Id ? ? ? ?

v, gene was found; -, not found. ?, unknown.

Abbreviations are as follows: DOE JGI, Department of Energy Joint Genome Institute; NCBI, National Center for Biotechnology Information; F/B/M, freshwater, brackish water, ma-

rine water.

2 ASCT, acetate:succinate CoA-transferase; 1A, homolog to members of subfamily ASCT-1A (Trypanosoma cruzi, EAN79240); 1B, homolog to members of subfamily ASCT-1B

(Fasciola hepatica, ACFO6126).
> Homolog to Giardia lamblia acetyl-CoA synthetase [ADP forming] (XM_001705692).

¢ Protein is predicted or known to be compartmentalized, likely in the chloroplast or in the mitochondrion.

4" At least two distinct genes were detected.

€ Cyanophora paradoxa Genome project http://cyanophora.rutgers.edu/cyanophora/home.php.

' Cyanidioschyzon merolae Genome Project http://merolae.biol.s.u-tokyo.ac.jp/.
& Partial sequence.

[160]. Though the enzymatic partners of the fungal pathways are not
fully identified, nitrite reductase (NirK) from Fusarium has been char-
acterized, it is homologous to copper-containing nitrite reductases
from proteobacteria, likely has a mitochondrial origin and further-
more has conserved homologues in Chlamydomonas [161]. In dia-
toms, the pathway could provide energy to prepare for the resting
stage or long-term survival under dark anoxic conditions, but none
of the enzymatic components have been characterized so far.

6. Evolutionary insights

During evolution, enzymes and pathways can readily undergo
recompartmentation between mitochondrial, cytosolic, and in the

case of algae, plastidic compartments, as the example of ADHE local-
ization shift for Polytomella (mitochondrial) vs. Chlamydomonas
(chloroplast) underscores [51,97]. The movement of whole pathways
from one compartment to another became evident through studies of
chloroplast-cytosol isoenzymes [162], studies of differential localiza-
tion of isoprenoid biosynthesis to plastids and the cytosol of algae
[163], starch metabolism in algae [164], peroxisomal pathways
[165], and the glycosome in trypanosome evolution [166]. The
problem of how to transfer whole pathways (or major segments
thereof) from one compartment to another has been a longstanding
evolutionary puzzle because a single enzyme in a new compartment
is of no use and hence hardly selectable in evolution, the whole func-
tional unit has to move. One possible solution to this problem

Fig. 3. Tentative reconstruction of the anaerobic energy metabolism in the diatom Thalassiosira pseudonana. Highlighted in blue are the different metabolites, redox sinks and/or
fermentation products that are typically identified in other unicellular algae but are currently not known for T. pseudonana. Although little is known about intracellular locations
of the different enzyme pathways, the cytosolic presence of OPPP and glycolytic enzymes was reported by Kroth et al. [172]. Also, these authors depicted a plastidic location of
PPDK and PYC, and probably of [ADP]-ACS. The nitrogen cycle enzymes, soluble nitrate reductase (NR) and nitrite reductase (NIR) are represented as proposed previously [173].
Reducing power in the form of reduced FDX for nitrite reduction in the chloroplast may be obtained via ferredoxin:NADP reductase (FNR), using NAPDH derived from the oxidative
pentose phosphate pathway, as seen in maize roots [174]. Although the depicted compartmentalization of the different enzymes clearly has to be provisional, as indicated by the
dotted lines of the organelles, predictions can be made based upon knowledge on Chlamydomonas and other (photosynthetic) eukaryotes. The metabolic routes involving succinate
are usually mitochondrial. In C. reinhardtii, PFL is dually targeted to both chloroplast and mitochondria; in the diatom two PFL isoforms with N-terminal extensions are found that
could be sent to different cellular compartments. Note that no genes for FeFe-hydrogenase maturation factors HydEFG have been found in the diatom genomes so far, and no hy-
drogen production has so far been reported for T. pseudonana, but can be predicted; note in addition that Giardia intestinalis also lacks detectable genes for FeFe-hydrogenase mat-

uration factors but does produce H, [8]. Enzyme abbreviations are as in Fig. 1.

Image: Courtesy of Nils Kroger (Georgia Tech's School of Chemistry and Biochemistry and the School of Materials Science and Engineering).
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involves the concept of minor mistargeting [167]. If protein targeting pathways could conceivably end up in the wrong compartment.
in eukaryotes is not 100% specific (and many examples of dual Such minor mistargeting is more likely for highly expressed proteins,
such as those involved in core carbon and energy metabolism. If a

targeting of enzymes are known), then minor amounts of whole
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small amount of a whole pathway is present, it could readily become
a unit of function, albeit at a low initial activity, and hence a unit upon
which natural selection could efficiently act to generate more or less
of a new compartmentation variant. Early in eukaryotic evolution, be-
fore the origin of the mitochondrial protein import machinery of the
inner and outer mitochondrial membranes, the situation was simpler,
because gene transfers from mitochondria to the nucleus would have
given rise either to pseudogenes (junk DNA) or to enzymes expressed
in the cytosol [168] and similar considerations apply for algal genes
acquired from plastids before the origin of the plastid protein import
machinery [143]. In that way, pathways ancestrally encoded by
organellar genomes can be readily transferred to the eukaryotic
cytosol.

With regard to more general evolutionary issues concerning the
origin of anaerobic energy metabolism in eukaryotes, it is often as-
sumed that ancestral eukaryotes were aerobes and that in order to
inhabit anaerobic habitats, eukaryotes had to acquire, via some
kind of lateral gene transfer, enzymes that would enable them to
generate ATP without the help of oxygen respiration in mitochon-
dria [70]. But that can hardly be true, as the study of anaerobic en-
zymes and pathways in algae indicates, through three lines of
evidence. First, algae are photosynthetic and produce oxygen,
hence they are under no evolutionary pressures to inhabit anoxic
environments in the first place (they can survive with light); ac-
cordingly, no compelling selective pressure for them to specifically
acquire genes for that purpose can be construed. Second, algal fer-
mentation pathways consist of the same enzymes of anaerobic en-
ergy metabolism as found in eukaryotic heterotrophs; were
eukaryotes acquiring genes in order to access anaerobic environ-
ments, one would hardly expect different lineages of eukaryotes
to acquire the same genes and enzymes (and in the case of [FeFe]
hydrogenase and PFL, even the same accessory proteins needed
for maturation). In other words, if eukaryotes had to acquire
genes in order to access anaerobic environments, eukaryotes
would harbor as many different anaerobic energy-producing path-
ways as prokaryotes do, which is hardly the case, as the present
study and other recent surveys [8] indicate. Third, no enzymes of
anaerobic energy metabolism have yet been found in eukaryotes
that are specific to any particular lineage (with the so far nagging
exception of trans-2-enoyl-CoA reductase of Euglena mitochondria
[63] that has so far failed to uncover homologues in any other eu-
karyote); rather they all trace to the eukaryote common ancestor
and as more lineages become sampled, the more pronounced this
trend becomes. The first real surprise in that respect came from
the Chlamydomonas genome, which uncovered all of the major en-
zymes of anaerobic energy metabolism currently known among eu-
karyotes [97]. The algae (oxygen producers) turn out to be the most
flexible eukaryotic anaerobes known. That insight is quite new and
helps to change our views of the phylogenetic distribution and eco-
logical significance of anaerobic energy metabolism in eukaryotes.

7. Conclusions

To date, C. reinhardtii is the alga that expresses the most complete
repertoire of anaerobic enzymes. It has a flexible mixed-acid fermen-
tation in which aspects of bacterial-, plant- and yeast-type fermenta-
tion can be found. Its fermentation capabilities included hydrogen
production, which is currently of considerable interest in the context
of biofuels. Chlamydomonas is so far unique among eukaryotes in that
it possesses two enzymatic systems to convert pyruvate into
acetyl-CoA under anaerobic conditions: PFL and PFO. The interplay
between these two routes, their regulation and their ecological signif-
icance warrant further study.

Among the photosynthetic algae, literature and genome surveys
show a broad panel of fermentative enzymes and a few cases of an-
aerobic respiration. On the basis of evidence surveyed here, it appears

that anaerobic respiration among eukaryotic algae is comparatively
rare and that anaerobic fermentation is widespread. Anaerobic respi-
ration is far more common among prokaryotes, where it is significant
at a global scale and influences the global cycling of elements, sulfur,
nitrogen and carbon. The diversity of metabolic routes in algal groups
shows marked variation among species (Micromonas, diatoms) and
strains, for example Chlamydomonas [27] and Euglena [31] in those
cases that have been studied. Further investigations are needed to as-
sess the scope and ecological significance, if any, of such variation.

Most of the enzymes for anaerobic pathways that are inferred from
genomic studies have not been characterized biochemically. For anaer-
obic metabolism in eukaryotes, there is still intense reliance upon a
handful of well-studied organisms [8], for photosynthetic eukaryotes
the anaerobic paradigm currently centers on Chlamydomonas. The ex-
pression and biochemical properties of these enzymes and pathways
need further study and in a broader spectrum of model systems. In ad-
dition, the spectrum of end products produced by various algae during
anaerobic fermentations is still mostly unknown. This would be impor-
tant information for understanding metabolic diversity among algae.
Finally, fermentation of algae appears to represent a significant ecolog-
ical component of carbon flux in soil that influences the content in or-
ganic acids, alcohols and hydrogen, this poses a challenge for future
ecological studies.
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