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Abstract. Maximum likelihood (ML) phylogenies Key words: Maximum likelihood — General revers-
based on 9,957 amino acid (AA) sites of 45 proteinsible Markov model — Amino acid substitution — Chlo-
encoded in the plastid genomes ©fanophora,a dia- roplast DNA — AA LogDet

tom, a rhodophyte (red algae), a euglenophyte, and fiveé
land plants are compared with respect to several propeiniroduction

ties of the data, including between-site rate variation and

aberrant amino acid composition in individual species.The maximum likelihood (ML) method is widely used in
Neighbor-joining trees from AA LogDet distances and Molecular phylogenetics (Felsenstein 1981). The utility
ML ana|yses are seen to be Congruent when site rat@f the methOd depends on the aVa|Iab|lt|y Of I’ealiStiC
variability was taken into account. Four feasible trees arénodels for the change of nucleotide or amino acid se-
identified in these analyses, one of which is preferredduences during evolution. If one is analyzing DNA se-
and one of which is almost excluded by statistical crite-duence data of protein-encoding genes, use of codon-
ria. A transition probability matrix for the general revers- based models of nucleotide substitutions (e.g., Muse and
ible Markov model of amino acid substitutions is esti- Gaut 1994; Goldman and Yang 1994; Yang et al. 1998)
mated from the data, assuming each of these four tree§as some advantages over using nucleotide sequences
In all cases, the tree with diatom and rhodophyte as Sistéwithout codon structure. HOWeVer, if one is interested in
taxa was clearly favored. The new transition matrix €stimating very ancient branching events, analyses of
based on the best tree, called cpREV, takes into accour@Mino acid sequences are preferable because synony-
distinct substitution patterns in plastid-encoded proteingnous substitutions that are already saturated contain no
and should be useful in future ML inferences using suchPhylogenetic information and because amino acid sub-
data. A second rate matrix, called cpREV*, based on stitutions are somewhat easier to model and analyze than

weighted sum of rate matrices from different trees, iscodon substitutions. ML analysis of amino acid se-

also considered. quences was first implemented by Kishino et al. (1990)

and was further developed with the program ProtML in

MOLPHY (Adachi and Hasegawa 1996b).

* Present addressThe Institute of Statistical Mathematics, 4-6-7 Transition matrices of amino acid substitutions were

Minami-Azabu, Minato-ku, Tokyo 106-8569 Japan first estimated by the parsimony method for data sets that
- Pr_esegt |?;j§rr;zijﬁ;|:$e§efvtﬁgf;g% BioSciences, Massey Uni- consist mainly of nuclear-encoded proteins; that is, the
ZfirISDIE;’s,er?'[ addressinstitu’te of Botany Ill, University of Duesseldorf, DayhOff model (DayhOff etal. 1978) and the JTT quel
Universitaetsstr. 1, 40225 Duesseldorf, Germany (Jones et al. 1992). These models are implemented in the
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tion of transition matrices for such data sets and what itMaterials and Methods

can tell us (Reeves 1992). For example, Adachi and Ha-

segawa (1996a, 1996b) estimated the rate matrix of miThe data used were complete cpDNA sequences of the land Zleats
tochondrial proteins (mtREV model), which is quite dis- mays(database accession number: X86563)yza sativa(X15901),
tinct due to a different genetic code to nuclear DNA, andNicotiana tabacun{S54304),Pinus thunbergi{D17510), andViarch-

f hi it h b | del antia polymorpha(X04465); the euglenophyt&uglena gracilis
or this reason It has been a popular model to use (e'g(x70810); the rhodophyt®orphyra purpurea(U38804); the diatom

Janke et al. 1997; Zardoya et al. 1998; Cao et al. 1998aydontella sinensi&67753) andCyanophora paradoxgJ30821): and
1998b; Waddell et al. 1999). Estimation of rate matricesthe complete genome sequence of the cyanobac&yichocystis
via ML is expected to result in less bias than via parsi_PCC6803 as the outgroup. A total of 9,957 amino acids (excluding
mony (e.g., Perna and Kocher 1995) gapped sites) are used from the following 45 proteins found in all 10

. . genomes (numbers in parentheses are numbers of amino acid sites);
Protein-encoding genes of chloroplast DNA (cpDNA) atpA (494), atpB (473), atpE (128), atpF (174),atpH (81), petB(215),

are used widely in plant phylogenetics (e.g., Soltis et alpet (36), psaa(748), psaB(726), psaC(81), psal(36), psbA(343),
1992; Delwiche and Palmer 1997), but amino acidpsbB(507),psbC(457), psbD(350), psbE(72), pshF(38), psbH (57),
substitution models tuned for such analyses are not yeisb!(36), psbJ(38), psbK(44), psbL (38), psbN(43), psbT(31), rpl 14
available. Recently, Martin et al. (1998) estimated the(120): P16 (134),1pl2 (271),1pl20 (112),rpl22 (111),pI36 (36),

. rpoB (982),rpoCl (554),rpoC2 (762),rpsll (126),rpsl2 (123),rpsl4
molecular phylogeny of chloroplasts using 45 cpDNA- (98), ps18 (58),rpsl9 (91),rps2 (223).1ps3 (202), rpsA (193), rps7

encoded proteins from nine species encompasing greqiiss), rpss (130),yc#4 (172), andycfo (58). This is the same data set

plants (chlorophytes), a euglenophyte, a red alga@sed in Martin et al. (1998) except for one minor change in the align-
(rhodophytes), a diatom, andyanophorawith cyano- ment of petG (where the number of amino acid sites used is now 36
bacteria as an outgroup. The sequences used provide lr}gtead of 37). The total number of sites is used was typically 9,957

. . . . . . (analyses of alternative edits of the data indicate the total number of
with sufficient data for estimating a reliable transition _ " "o text).

probability matrix of amino acids in chloroplast proteins. | maize, it is estimated that about 25 cpDNA sites are subject to
In doing so, we need also consider critically the treeRNA editing (Maier et al. 1995). Although the total degree of editing
relating these sequences. is not known for all the species in the present data set, it will only affect

Many evolutionary studies of plastid phylogeny have comparisons of differentially edited codons at the small fraction of

h . edited sites. This minor, and presently difficult-to-gauge effect was also
been performed with ribosomal RNA (BhattaCharya ignored as in Martin et al. (1998) and others using such data.

1997). The rRNA data has about 1,500 aligned positions To estimate the transition probability matrix of the general revers-
and four possible states per position. On the other handple Markov model of amino acid substitution for cpDNA-encoded
proteins in chloroplast genomes contain about 10,00@r0teins, the phylogenetic relationships among the species must be

sites for comparison and 20 possible states per positio established, or, if there exists any uncertainty, it should be taken into
P P perp r]cl'ccount in estimating the matrix. A previous ML analysis of the same

It seems likely that proteins in chloroplast DNA contain gata set used here (Martin et al. 1998) detected only four trees among
much useful information for studying plastid evolution. the 10,000 bootstrap replications with RELL (Kishino et al. 1990;
Previous work has suggested that this might be the caddasegawa and Kishino 1994), using the JTT-F model (Jones et al.

(Martin etal 1998) but there have been dissenting view§992; option “-F” adjusts the amino acid frequencies to those of the
’ ’ data under analysis). Tree-1 with the rhodophyte/diatom grouping gave

(e.g., Lockhart et al. 1999). Certainly, using this infor- o pighest likelihood. Additional ML analyses are carried out assum-
mation requires suitable statistical models of the substiing site-heterogeneity, which was not taken into account in Martin et al.
tution process if the inferred phylogeny is to be reliable.(1998). These assumed adistribution of site rates (Yang 1994; Wad-

Although it can be computationally demanding when adell et al. 1997) and used the AAML program in the PAML package

| b f . d. the ML hYang 1997) with eight categories in the discrét@pproximation.
arge number of species aré compared, the approac As shown later, pairwise tests of amino acid composition (Penny et

has some advantages in phylogenetic inference (e.Qai. 1999; Waddell et al. 1999) show clearly nonstationary evolution in
Swofford 1996), and its utility can be steadily extendedthese sequences, and this variation is not taken into account in the ML
by the development of more realistic amino acid substi-2nalysis. Therefore, we estimated distances by the LogDet transform

. . (Barry and Hartigan 1987; Lockhart et al. 1994; Lake 1994) applied to
tution models (e.g., Adachi and Hasegawa 1996a). amino acid sequences using the program from Waddell et al. (1999),

In the abs?r"?e of well tuned ML Su'bStitUtion rdeels_!au‘ter removal of the invariant sites in proportion to the unvaried sites
and the possibility of unequal (nonstationary) amino acidiwaddell and Steel 1997). The proportion of invariant sites was esti-
composition in different taxa, it is useful to consider the mated using the capture-recapture method of Waddell (1995) and Wad-
use of amino acid (AA)—based LogDet distances (Lock-de" et al. (1999). From these distances, trees were built using the NJ

. 8 method (Saitou and Nei 1987).
hart et al. 1994; Penny et al. 1999; Waddell et al. 1999) Last leaving rapidly changing sites in any analysis can lead to

combined with a distance based phylogenetic method. Ifrrors. To help avoid this possibility we used “site stripping” as imple-
site rate heterogeneity is also expected, then use of th@ented in Waddell et al. (1999). Such analyses involve removing all
invariant sites—LogDet is also wise (Swofford 1996; amino acid positions showing any change within a defined monophy-

Waddell and Steel 1997: Waddell et al 1999) Sim”arletic group(s). Such objectively edited data can then be used for any
thods h " b, lied t ﬂ']. dat .b L type of analysis (e.g., ML, parsimony, distance-based methods).
methods have recently been applied o this data Dy Lock- The transition probability matrices were estimated for alternative

hart et al. (1999), and we compare and contrast our régees using ML and the same program used in Adachi and Hasegawa
sults with theirs. (19963).
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Table 1. Comparison of log-likelihood of trees for the 45 proteins with the JTT-F model of amino acid substitution

Without I" With T’ Stripped sites

Tree Concatenated Separate Concatenated Separate Without With T'

45 proteins (9,957 sites) (5,397 sites)

Tree 1 <-107,958.1> <-103,229.0> <-103,923.7> <-100,665.0> <-25,647.8> <-25,370.8>
(0.8330) (0.8925) (0.8240) (0.8610) (0.8091) (0.7182)

Tree 2 -109.8 +38.7 -192.8 +45.7 -115.5+27.3 -162.7 +37.8 -127.2+30.1 -81.9+20.2
(0.0019) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Tree 3 -29.4+28.6 -40.8 +£36.0 -17.0+18.0 -30.4+30.8 -19.8+18.9 -76+11.1
(0.1650) (0.0850) (0.1724) (0.0662) (0.1272) (0.2146)

Tree 4 -71.5+25.1 -53.9+33.6 -34.8+15.9 -28.9+30.1 -245+18.4 -12.1+10.3
(0.0001) (0.0225) (0.0036) (0.0728) (0.0637) (0.0672)

42 proteins (excludingpoB, rpoC1, andrpoC2, (7,659 sites) (4,687 sites)

Tree 1 <-74,516.6> <-71,019.2> <-71,831.9> <-69,323.3> <-21,815.0> <-21,617.1>
(0.7781) (0.7635) (0.6886) (0.7367) (0.8306) (0.7554)

Tree 2 -236.3+36.8 -250.8 +45.7 -176.0+28.0 -186.4+34.6 -145.2+29.9 -98.1+20.9
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

Tree 3 -22.9+23.4 -33.0+27.7 -13.9+14.4 -26.7+£20.2 -22.9+17.9 -10.3+10.5
(0.1070) (0.0778) (0.1136) (0.0464) (0.0841) (0.1280)

Tree 4 -26.1+23.0 -23.9+26.7 -10.7+14.8 -14.1+18.7 -22.3+18.0 -10.9+10.4
(0.1149) (0.1587) (0.1978) (0.2169) (0.0851) (0.1166)

The log-likelihoods, InL, of the ML tree are given in angle brackets, (atpA),
and the differences\ In L, of alternative trees from that of the ML tree  (atpF),
are shown with their SEs (following +), which were estimated by the (petG),
formula of Kishino and Hasegawa (1989). Bootstrap proportions in(psaQ,

with 10* replications. “Separate” means thatlrof each gene is sepa-
rately estimated and then is summed up. TreeCyafophora(dia-
tom, rhodophyte), Euglena, chlorophyte))), Tree 2:Gyanophora,
(rhodophyte, (diatom, Huglena, chlorophyte)))), Tree 3: ((diatom,
rhodophyte), Cyanophora(Euglenachlorophyte))), Tree 4: Gyano-
phora, (diatom, rhodophyte)),Huglena,chlorophyte)).

ML estimates of shape parameteiof the I'-distribution for Tree 1

0.22 and 1.26 dtpB), 1.46 and 5.234tpE), 2.85 and 7.40
1.39 and 0.634tpH), 0.50 and 0.72etB, 1.02 and 1.58
0.57 and 0.86fsaA, 0.45 and 0.89saB, 0.32 and 0.66
0.63 and 2.91gsaJ), 0.29 and 0.57(dsbA, 0.69 and 1.02
parentheses were estimated by the RELL method (Kishino et al. 1990)psbB, 0.60 and 0.95gsbQ, 0.35 and 0.63fdsbD, 0.57 and 1.05

(psbB, 0.62 and 1.07gsbF, 0.56 and 2.25gsbH, 0.70 and 1.67
(psbl), 0.99 and 1.93gsbhJ), 0.74 and 2.63{dsbK), 0.38 and 1.38
(psbb), 1.71 and 2.80fsbN, 1.07 and 2.06 dsbT), 0.81 and 1.87
(rpl14), 0.66 and 2.18rpl16), 0.76 and 2.71rpl2), 1.06 and 4.81
(rpl20), 1.07 and 4.60rpl22), 0.55 and 2.17rpI36), 0.97 and 3.98
(rpoB), 0.91 and 3.85rpoC1), 0.94 and 5.48rpoC2), 1.33 and 2.94
(rpsll), 0.38 and 1.18rpsl2), 0.67 and 3.57rfsl4), 1.11 and 2.95

(no significant differences for other trees; data not shown) and tregrpsl8), 1.00 and 2.66rfs19), 1.23 and 3.56rps2), 1.01 and 4.18
length for Tree 1 (a measure of relative evolutionary rate of each(rps3), 1.03 and 3.28ps4), 1.45 and 3.18rps7), 1.04 and 3.90rps8),
protein) are 0.56 and 2.32 (concatenated sequences), 0.45 and 1.2110 and 4.24y(cf4), 1.96 and 5.30yc0).

Phylogenetic Tree of Proteins in

Chloroplast Genomes

these chloroplast sequences using both ML and AA Log-

the Euglendchlorophyte clade in our ML analyses. That
left 15 possible trees for the four ingroupBuglend
chlorophyte, rhodophyte, diatonGyanophora,and the
Our first task is to estimate the most reliable tree foroutgroupSynechocysti examine.

The ProtML program from MOLPHY (Adachi and

Det methods. Because estimation of a transition probHasegawa 1996b) and the AAML program in PAML
ability matrix will be sensitive to the assumed phyloge- (Yang 1997) were applied by assuming site homogeneity
netic tree, we will hopefully obtain a reliable tree prior to @nd site heterogeneity, respectively, with the JTT-F
doing this. It also makes sense to consider how muchnodel, and the results are given in Table 1. As in Martin
estimates of the inferred transition matrix vary depend-et al. (1998), the only trees (Fig. 1) we recovered in any
ing on the tree selected, which we do later for all rea-0f 10,000 RELL bootstrap replicates in this paper were:
Tree 1: Cyanophora,(diatom, rhodophyte),Euglena,
chlorophyte))), Tree 2:Gyanophora(rhodophyte, (dia-
tom, (Euglena,chlorophyte)))), Tree 3: iatom,rhodo-
phyte), Cyanophora,(Euglena,chlorophyte))), Tree 4:
((Cyanophora(diatom, rhodophyte)),Huglena,chloro-

sonable trees.

ML Tree Analyses

The Euglendchlorophyte grouping and within-

phyte)), and therefore only these four trees are shown in

chlorophytes relationships are not biologically conten-the tables. Although site heterogeneity is taken into ac-
tious and were well supported (e.g., Martin et al. 1998).count to some extent by using the discrEtdistribution,

We therefore fixed the relationships oElglena,
(Marchantia, (Pinus,(Nicotiana,(Zea, Oryz))) within

since the lineage specific rates of evolution can differ
among different proteins, we also carried out ML esti-
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Tree-1 Cyanophora analyses with thd’-distribution gave AIC values of
diatom 207,921.4 and 204,660.0, respectively. This indicates
rhodophyte that the separate analysis approximates the underlying
Englena evolutionary process better than the concatenated analy-

|: sis, which assumes homogeneity of substitution process
chlorophyte across genes, and this holds even if the site heterogeneity
is taken into account with thE-distribution. The sepa-

Tree-2 Cyanophora rate analyses with thE-distribution for each of the in-
rhodophyte dividual proteins turned out to best approximate the data
diatom given the present models, and the result of the analyses
Englena should hopefully be more reliable than those which had
chlorophyte worse AIC values. Note, this result is also consistent

with non-neutral evolution, although parts of the model
need better specification to be more confident of this

Tree-3 diatom result (e.g., the form of site rate distribution; Waddell et
rhodophyte al. 1997). The result in terms of tree preference does not

differ very much for different models. All the analyses
Cyanophora prefer Tree 1, and Trees 3 and 4 receive minor support,
Englena while Tree 2 is clearly rejected.
chlorophyte As noted in Martin et al. (1998), the subunits of the
chloroplast DNA (cpDNA) encoded RNA polymerase

Treed Cyanophora rpoB, rpoCl, and rpoC2 favor Tree 2, and the log-

likelihood of Tree 1 is lower than those of Tree 2 by 12.3
diatom +6.4 (+ 1 SE), 2.9 + 4.5, and 8.5 + 4.8, respectively, for
rhodophyte the JTT-F model with the discretédistribution. Table 1
Englena also shows the results of the ML analyses for the 42

proteins excluding these subunits. These analyses again

chlorophyte . .
support Tree 1, although the BPs for Tree 1 are a little bit

lower than they were with 45 proteins, and the BP of
Tree 4 is increased.

Naylor and Brown (1997) have recently diagnosed
mation for each individual protein separately, thenamino acids which frequently substitute as the major
summed up the estimated log-likelihoods [dnby using  cause of erroneous tree estimation when using mtDNA.
the TotalML program in MOLPHY rather than analyze Therefore, we carried out AAML analysis after convert-
the concatenated sequences. These analyses are aisg all valines, leucines, and methionines into isoleucines
given in Table 1. Note that if the other parts of the modeland all lysines into arginines, but we did not obtain sig-
are correct, needing to adopt different relative edgenificant differences from the analysis of the original data
lengths for different genes (which is what summed ML (log-likelihood differencesA In L of Trees 2, 3, and 4
does) can be a sign of non-neutral evolution (Waddellfrom Tree 1 were -86.3 + 21.3, —10.4 + 16.5, and -26.8
1995 [p. 469], 2000). + 14.1 for the 45 proteins).

The adequacy of models were compared by using the Our site stripping analysis was like that in Waddell et
Akaike Information Criterion, where the AIC score al. (1999) and involved removing all amino acid posi-
-2 xInL + 2 x (number of parameters). The model thattions showing any change within the monophyletic group
minimizes AIC is considered to be the most appropriateof Euglendland plants. This leaves 5,397 and 4,687 sites
model (Akaike 1974). The JTT-F model uses the amindfor the 45 and 42 proteins, respectively, these generally
acid frequencies of the data (the number of parameters iseing an unbiased set of the slowest evolving sites,
19) and, for a tree with 10 species, 17 branch lengthsvhich are expected to be most robust to misspecification
must be estimated. For tHe-distribution model, addi- of the ML model (assuming relative rates of sites are
tionally one parameter (shape parameter of the distribusimilar across the tree). The site stripping ML results
tion) must be estimated. Therefore, the number of estiagain favor Tree 1, exclude Tree 2, and leave Trees 3 and
mated parameters is 3%=(17 + 19 + 1) for each ML 4 with low levels of support. Interestingly, while the
analysis with thel’-distribution versus 36 with the site support of Tree 1 decreases for the 42 protein-data rela-
homogeneity. For Tree 1 and the concatenated analystive to the 45 protein-data in the conventional analyses,
of the 45 proteins with the site homogeneity, AIC wasthe support of Tree 1 increases for the 42-protein-data
215,988.2, and AIC for the separate analysis was reducesgfter site stripping analysis. No such increase in the sup-
to 209,698.0. Furthermore, the concatenated and separgtert of Tree 4 was observed.

Fig. 1. Candidate plastid phylogenies discussed in this paper (with
Synechocystias an outgroup).
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Table 2. G? statistics of amino acid composition stationarity (for the 9,957 sites)

Species 2 3 4 5 6 7 8 9 10

1 Synechocystis 302.6 165.5 191.8 702.1 322.6 160.5 166.1 178.3 174.8
2 Odontella — 75.5 53.2 182.1 43.4 115.6 141.4 105.0 108.1
3 Porphyra — — 35.9 326.6 89.1 73.2 92.5 75.3 75.4
4 Cyanophora — — — 326.1 63.0 93.0 97.8 71.9 76.9
5 Euglena — — — — 223.0 406.3 430.6 340.5 342.9
6 Marchantia — — — — — 220.9 218.1 133.6 150.6
7 Pinus — — — — — — 33.9 39.7 37.0

8 Nicotiana — — — — — — — 39.7 39.4

9 Zea — — — — — — — — 21.2

10 Oryza — — — — — — — — —

3G? = 7,363.02df = 855. About 40 (19 d.f.) is quite significant, so all pairs of sequences are clearly different in amino acid composition, except
within the last three, which are all higher plants.

Biased AA Composition and LogDet the sequence with the most different AA composition,
Euglenawas excluded (Table 3). While there is no guar-

Using the pairwise test of Waddell et al. (1999) (see alsantee that the unequal AA composition of the other se-
Penny et al. 1999), the amino acid composition is seen tguences is not still causing a problem, this approach is an
vary significantly between lineages (Table 2), thus vio-interesting check. In this case, the support for Tree 1
lating the stationarity assumption in the ML models useddecreased slightly compared to the values shown in
above. This in turn may cause inconsistency of treeTable 1 (except after site stripping of the 45 proteins),
estimation (Lockhart et al. 1994; Swofford 1996). In and Tree 2 was rejected even more strongly.
particular, Euglenadeviates most strongly from other
genomes studied here at the level of amino acid compo-
sition. Tree 2 Is Quite Unlikely

AA LogDet distances (Penny et al. 1999; Waddell et
al. 1999) take into account variation of amino acid com-To make this point clearly, we need to correct an error in
position across lineages, when sites evolve uniformlya previous paper. In study of Martin et al. (1998), it was
Their use, combined with NJ, groups the diatom with thereported that Tree 1 was supported by ML analyses of a
Euglendchlorophyte group (Tree 2) with a BP of 77% 11,039-site data (including gapped sites) from the same
for the 45 protein concatenation. The proportion of in-45 proteins as studied here, while Trees 2, 3, and 4 were
variant sites estimated by a monophyletic group capturenot excluded. It was also claimed that NJ with both Day-
recapture method (Waddell et al. 1999) was 3,926 out ohoff (NJ-D) and Kimura (NJ-K) distance estimates, as
9,957 (39.4%). The monophyletic group identified for well as parsimony (MP), gave Tree 1 100% bootstrap
this method was th&uglendchlorophyte group, which  support. However, rechecking the results and data re-
is diverse but not contentious. These inferred invarianvealed that the NJ-D, NJ-K, and MP results reported in
sites were then excluded in proportion to the amino acidMartin et al. (1998) actually correspond to a larger data
frequency of the constant sites (Waddell 1995). Analysisset of 46 proteins consisting of 11,521 sites, including
of this data set with AA LogDet distances (or thg,p  therbcL sequences from the same genomes. Correct BPs
AA LogDet, e.g., Waddell 1995) favors both the rhodo- with the 11,039-site and 11,521-site data sets using NJ-
phyte/diatom grouping an@yanophoraas sister to the D, NJ-K, and MP are shown in Table 4. NJ with the
chloroplast sequences (Tree 1) at 55% BP. Thus, with th®ayhoff and Kimura models and MP do detect only Tree
more appropriate distances, the NJ analyses are in agreg-for the 11,521-site data set. However, whbgL is
ment with the ML analyses. removed, these three methods support Tree 2, contrary to

Next, when the threepo proteins are excluded from ML but consistent with distance Hadamard analysis us-
the analysis, the rhodophyte/diatom grouping is suping AA LogDet distances (Lockhart et al. 1999). It seems
ported with 100% BP by ;p,-AA LogDet, and Tree 2 that excludingrbcL removes a strong bias from the
was not recovered in 1,000 bootstrap replications. Al-11,521-site data that discriminates against Tree 2, due to
though Tree 1 is the NJ tree in this second analysis, thehared paralogy of this gene @dontellaandPorphyra.
BP for the sister-group relationship Gfyanophorao all  Also, support for Tree 1 is restored, using NJ-D, NJ-K,
other plastids (with the cyanobacteria as an outgroup) isnd MP on the 9,958-site data set, if gapped sites are
only 30.7%, so Tree 1 is not discriminated from Trees 3excluded.
and 4. It was previously shown that Tree 2 is strongly fa-

We also carried out ML analyses of the data sets whewored by the threepo genes,rpoB, rpoCl, andrpoC2
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Table 3. Comparison of IrL of trees excludindeuglenawith the JTT-F model of amino acid substitution (concatenated sequences)

All sites Stripped sites
Without I" with I’ Without I" With T’
45 proteins
(9,957 sites) (7,129 sites)
Tree 1 <-94,154.6> <-91,230.9> <-42,485.7> <-41,726.0>
(0.5073) (0.6048) (0.8330) (0.7444)
Tree 2 -153.8 +39.0 -132.1+26.1 -149.5+334 -99.1+21.6
(0.0000) (0.0000) (0.0000) (0.0000)
Tree 3 -3.0+274 -4.2+16.8 -25.5+22.7 -11.2+13.1
(0.4808) (0.3884) (0.0981) (0.1660)
Tree 4 -38.8+24.4 -25.3+14.1 -25.2+22.6 -14.0+12.6
(0.0119) (0.0068) (0.0689) (0.0896)
42 proteins excludingpoB, rpoC1, andrpoC2
(7,659 sites) (5,814 sites)
Tree 1 <-65,589.7> <-63,669.9> <-32,373.9> <-31,914.1>
(0.4067) (0.4474) (0.5948) (0.5434)
Tree 2 -269.4+38.4 -188.6 £27.9 -211.7+33.4 -138.7 +23.6
(0.0000) (0.0000) (0.0000) (0.0000)
Tree 3 -3.6+23.0 -3.7+14.1 -22.2+20.9 -11.0+12.2
(0.2413) (0.2774) (0.0701) (0.0972)
Tree 4 -1.6+22.9 -3.6+14.0 -8.6+22.1 -3.4+13.3
(0.3520) (0.2752) (0.3351) (0.3594)

(Martin et al. 1998). Among the proteins common to with composition bias (Lockhart et al. 1994, 1999; Wad-
these chloroplast genomes, the thrpe's belong to the dell 1995; Hasegawa and Adachi 1996; Waddell et al.
most highly variable family (Goremykin et al. 1997). 1999) in use in phylogenetic inference. In all cases, Trees
Furthermore, due to the presence of numerous internall? and 3 were also still viable, due to some difficulty in
gapped regions, thgo-proteins contain many sections locating where the outgroup should join the ingroup tree.
of uncertain alignment. For example, in the 11,039-site
alignment there are a tota_l of 1,082 gapped sites, ofrpq cpREV Model of Amino Acid Substitution
which 877 (81%) are found in the thrego genes. In the
present paper, gapped sites are excluded from the anal§ince we cannot be certain of the correct tree, we esti-
ses, and the amount of data remaining, 9957 sites, is stithated transition probability matrices for Trees 1, 2, 3,
large. All of the ML analyses of this paper exclude Treeand 4, respectively, using the 9,957-sites data. Table 5
2, regardless of whether thipo genes are included (45 (alsowww.evol.ism.ac.jp gives the transition probabil-
protein data) or excluded (42 protein data);-distribu- ity matrix estimated assuming Tree 1, which we refer to
tion of rate heterogeneity across sites was considered @s cpREV.
not; only the highly conservative site strippings were Table 6 shows the result of the ML analysis of the 45
considered; the JTT-F or cpREV (see below) substitutiorproteins (9,957 sites) with the cpREV matrix. Although
matrix is used. Trees 3 and 4 cannot be excluded, the differences of the
In summary, our phylogentic analyses, both ML andresult due to using cpREV are minor. While the concat-
AA LogDet, cannot exclude Trees 3 and 4, but stronglyenated analysis of the 45 proteins using cpREV and the
discriminate against Tree 2. The highly variablgo  I'-distribution gives a maximum I of -103,141.2
genes support Tree 2. Apparently, this signal leads tqTable 6), those by the JTT-F, Dayhoff-F, and mtREV-F
strong bootstrap support for Tree 2 with simple substi-give —103,923.7 (lower by 782.5 + 45.6 than that by the
tution models, overriding the signal contained in the re-cpREV), -104,765.3 (lower by 1,624.1 + 66.3) and
maining 42 genes. Bootstrap estimates of support can bel05,612.4 (lower by 2,471.1 + 97.9), respectively.
susceptible to bias in a model-dependent manner; th&hese values show that the JTT model of nuclear-
results here suggest that the LogDet and ML models arencoded proteins approximates the amino acid substitu-
less vulnerable to such bias than the Dayhoff and Kimuraions of chloroplast-encoded proteins much better than
distances and MP in the case of this data. Notably, stronthe mtREV model does. This is probably due to the codes
evidence favoring the position dddontellain Tree 1  used in the nuclear and chloroplast systems being the
over Tree 2 is found in the chloroplast operon organiza-universal code and quite distinct from that of studied
tion (McFadden et al. 1997; Leitsch et al. 1999). If this mitochondria.
data is correct, then the results here underscore the im- We also ran the analyses using the matrices estimated
portance of realistic substitution models that can copédor Trees 2, 3, and 4, with results shown in Table 7. The
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Table 4. Bootstrap support for Tree 1 versus Tree 2 realisitic assessment of support for the different trees)
BP (96) (Table 1). . _ .

Note, the average amino acid frequencies for the 45

Tree 1 Tree 2 chloroplast proteins studied here are more similar to

6 . nuclear proteins (compiled by Jones et al. 1992) than to
protems . . . .
11,521 sites mitochondrial proteins of vertebrates (mtREV; Adachi

ML 78.0 0.0 and Hasegawa 1996a), with the exceptions of cysteine

NJ-D 100 0 and isoleucine (data not shown). A lower frequency of

NJ-K- 100 0 cysteine in mitochondrial and chloroplastic proteins rela-

MP 100 0 : -

45 proteins tive to that of nuclear proteins is probably due to many
excludingrbcL organelle-encoded proteins being trans-membrane, so the
11,039 sites disulfide bonds common in globular proteins are rela-

ML 82.4 61 tively rare.
E‘J]:E 13 g; SincerbcL sequences were not used in constructing
MP 0 100 the cpREV, they can be used to test whether the appli-
Excluding gaps cation of cpREV to thebcL data significantly improves
9,958 sites the likelihood over transition matrices estimated using
mJ'-_D 8:;'7 9%2 nuclear and mtDNA encoded genes. To do this, we ex-
NJ-K 18 82 amined a data set of 2bcL sequences from 6 ferns, 2
MP 36.5 63.5 byophytes, 2 algae, and 11 seed plants, including 3 an-
42 proteins giosperms, 3 gnetales, 2 conifers, 2 cycads, @inkgo
excludingrpoB, rpoC1, rpoC2 (data available via FTP froml34.169.70.80/ftp/pub/
7,864 sites ML 68.8 0.0 incoming/adachi/rbcl.data). We also wished to look at
NJ-D 100 0 the effect of cpREV with respect to the branching order
NJ-K 100 0 of seed plant groups, since this is currently a highly
_ MP 90.5 55  debated topic. In particular, the relationship of the gneto-
Eécélédslrilgsgaps phytes to the angiosperms is controversial because the
' ML 745 o  anthophyte hypothesis holds Gnetales to be the sister

NJ-D 99 % group of angiosperms (reviewed in Crane et al. 1995),
NJ-K 98 0 although recent molecular data are equivocal on this
MP 89.5 0 view (e.g., Crepet 1998, Doyle 1998), and the latest tend
Bootstrap proportions for Tree 1 and Tree 2 with neighbor-joining to reject it (Hansen et al. 1999; Samigullin et al. 1999;
using the Kimura (NJ-K) or Dayhoff (NJ-D) or maximum parsimony Winter et al. 1999). Specifically, we examined all 105
(MP). 100 samples were used. rooted trees for the five seed plant clades assuming iden-
tical site rates. Then, the best tree among those 105 was

results are similar to the previous ones. In particularcompared using th&-distribution to the best tree that
even if the optimal transition matrix for Tree 2 is used, contained the angiosperm—Gnetales clade. The best tree
Tree 2 is again rejected with a high statistical signifi- contained the branching order (((Gnetales, (conifers,
cance. This holds also if site heterogeneity is taken intd3inkgo, cycads), angiosperms), outgroups) with.lof
account. There is only a slight favoritism for selecting —3,364.94 (Dayhoff-F), -3,340.02 (JTT-F), -3,436.10
the tree that rate matrix was estimated on. This resul{MtREV-F), and -3,327.23 (cpREV-F). The best tree
gives us confidence that cpREV will be a useful model,grouping angiosperms and Gnetales as sisters showed
even if Tree 1 turns out not to be correct. These fairly(((Ginkgo,conifers), (cycads, (Gnetales, angiosperms))),
mild effects are probably due to the difference betweerputgroups) (-2.09 + 7.91 for Dayhoff-F, —2.27 + 7.45 for
these trees being a few short internal edges; with mordTT-F, —-0.05 + 7.11 for cpREV-F), although the stan-
taxa, and longer edges, a bias due to which tree is agdard error ofA In L was much larger thaa In L. Thus,
sumed when estimating the rate matrix should bealthough therbcL amino acid sequ