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In 1985 Cornish-Bowden wrote “‘although there is now much to
suggest that introns are an ancient relic of primordial genes, con-
vincing proof must await the discovery of clearly corresponding
intron arrangements in genes that arose by duplication before the
separation of prokaryotes and eukaryotes”'. Genes for chloroplast
and cytosolic glyceraldehyde-3-phosphate dehydrogenases of euka-
ryotes are descendants of an ancient gene family that existed
in the common ancestor of extant eubacteria. During eukaryotic

evolution, both genes were transferred to the nucleus from the
antecedents of present-day chloroplasts and mitochondria,
respectively” . Here we report the discovery of five spliceosomal
introns at positions that are precisely conserved between nuclear
genes for this chloroplast/cytosol enzyme pair. These data provide
strong evidence in favour of the ‘introns early’ hypothesis, which
proposes that introns were present in the earliest cells, consistent
with the idea that introns facilitated the assembly of primordial
genes by accelerating the rate of exon shuffling®'>.

Two introns strictly conserved in nuclear genes encoding chlo-
roplast and cytosolic glyceraldehyde-3-phosphate dehydro-
genases (GAPDH; GapA/GapB and GapC, respectively) have
been generally regarded as strong evidence in favour of the
‘introns early’ hypothesis'®, although the identity of intron posi-
tions has also been dismissed as ‘parallel insertion of different
introns’'"*. To obtain more information on intron conservation
in GAPDH genes, we have determined gene structures for GapA4
and GapC from the unicellular green alga Chlamydomonas rein-
hardtii and for two new GapC genes from higher plants, GapCI
of pea and GapC4 of maize. We found three new intron positions
that are precisely conserved between chloroplast and cytosolic
GAPDH genes. Figure 1 shows that there are 47 known intron
positions in 27 different GAPDH genes. Of the ten intron posi-
tions found in chloroplast GAPDH genes (GapA and GapB,;
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METHODS. Cloning and sequencing of cDNAs and genomic clones encoding
GapA and GapC of Chlamydomonas reinhardtii, GapC4 of maize and GapC1
of pea has been described®***%2223 ¢DNA clones of Chlamydomonas enco-
ding GapA and GapC were identified using heterologous probes of maize®.
The genomic clone encoding GapC4 of maize was identified with a ¢cDNA
probe encoding maize GapC3 (ref. 24). The genomic clone encoding pea
GapC1 was isolated using the authentic cDNA probe®”. intron/exon arrange-
ments were established by comparing the genomic sequences with their
corresponding cDNA sequences, except for Chlamydomonas GapC, for which
intron positions were deduced by homology comparisons with genes from
angiosperms. Sources of sequence information: Chiamydomonas GapA and
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GapC, pea GapCl and maize GapC4 (lines 4, 7, 10, 11), this work; maize
GapA (line 3)*?; pea GapA and GapB (lines 1, 5)*%; maize GapC1 (line 9)°%,
GapC genes from Schizophylium commune, Phanerochaete chrysosporium
and Agaricus bisporus (lines 25 to 27)%; all other sequences can be found
in release 35 of GenBank. A. thaliana, Arabidopsis thaliana; C. reinhardltii,
Chlamydomonas reinhardtii; C. elegans, Caenorhabditis elegans; Sch. man-
soni, Schistosoma mansoni; Coll. gloeosporioides, Colletotrichum gloeospo-
rioides; Cryph. parasitica, Cryphonectria parasitica; Coch. heterostrophus,
Cochliobolus heterostrophus; A. nidulans, Aspergillus nidulans; Schizoph.
commune, Schizophyllum commune; Phan. chrysosporium, Phanerochaete
chrysosporium.
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FIG. 3 Phylogenetic tree for GAPDH
sequences showing intron conserva-
tion patterns. The tree was inferred by

Intron positions conserved
across GapA(B)/GapC genes
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Pisum sativum GapB
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the neighbour-joining method®” from a
divergence matrix of non-synonymous
substitutions  per non-synonymous
site, Ka’®. Branches bearing genes
found in eubacterial genomes are
shown as solid lines, those bearing
genes found in eukaryotic genomes
are shown as grey lines. The scale bar
indicates 0.1 substitutions per site.
The numbers above the GapA and
GapC branches indicate that these were found in 100/100 bootstrap
parsimony replicates (PAUP, version 3.0) for the amino-acid alignment;
these are the only branches in the figure that are essential to arguments
concerning the age of introns conserved across GapA(B)/GapC genes
(see text). Designations of intron positions correspond to those indicated
in Figs 1 and 2. The E. coli GAPDH genes were designated in the figure

lines 1 to 6 in Fig. 1), five are precisely conserved in glycolytic
GAPDH (GapC) genes of plants and animals: introns 28 and
30 (corresponding to positions 145-2 and 166-1) in vertebrates
(lines 16 and 17 in Fig. 1) and nematodes (line 13),
respectively''?, and the three new introns 23, 29 and 46 (posi-
tions 111-0, 160-0 and 318-2) in GapC genes of higher plants
(Fig. 1. lines 7 to 10). In addition to these precisely conserved
introns across the GapA(B)/GapC boundary, there are four
cases of conserved introns between GapC genes of different
major cukaryotic groups (introns 7, 15, 24, 45) and numerous
cases of quasi-conservation or ‘slippage’ of introns'>**, in which
positions differ by only one to cight bases both across genc
classes and major taxonomic groups, such as introns B40-0/
C41-0, B95-0/C97-0, C144-0/B145-2, C180-1/B183-0, C-3-1/C-
2-2/C-1-0/C-1-1/C1-0 (plants/fungi), C7-1/C7-2 (plants/
fungi), C30-0/C32-2 (Drosophila/fungi), C77-0/C77-2 (verte-
brates/plants),  C104-2/C105-0/C107-0  (fungi/Chlamydo-
monas/animals) C226-2/C227-0 (fungi/fungi), where B and C
denote GapB and GapC, respectively.

Figure 2 shows a detailed alignment of the exon sequences
flanking the five introns precisely conserved between chloroplast
and cytosolic GAPDH genes. A representative set of five genes
has been selected from Fig. 1, two genes encoding chloroplast
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= Gallus gallus GapC

s Caenorhabditis elegans Gpd1
- Zea mays GapC4

Escherichia coli gap1
Anabaena variabilis gap1

+ intron present

-~ intron not present

as gapl and gap2 instead of gapA and gapB, respectively, as in the
original literature®, in order to avoid confusion with the plant GapA
and GapB genes”. Sources of bacterial sequences are given in®, with
the exception of Rhodobacter sphaeroides™. For all other sources, see
Fig. 1 legend.

GAPDH (GapA of Chlamydomonas and GapB of pea) and three
encoding the cytosolic enzyme (chicken GapC, nematode Gpdl
and maize Gap(C4). Clearly, in all five pairwise comparisons,
introns interrupt the GapA(B) and GapC coding sequences in
identical positions. This is also true for intron 25 (position 111-
0). where the two flanking codons 110 and 111 have changed
from GIn| Ala in Chlamydomonas GapA to Lys|Gly in maize
Gap(C4. The probability of finding these five identical intron
positions across the GapA(B)/GapC boundary as a result of
independent insertion is extremely low and is estimated to be
roughly 2 x 107’ (Fig. 2 legend).

In Fig. 3, the same five sequences have been incorporated
into a phylogenetic tree together with the GAPDH genes of
the cyanobacterium Arabaena variabilis (genes gapl, gap2 and
gap3 ), the y-purple bacterium Escherichia coli (genes gapl and
gap2) and the a-purple bacteria Rhodobacter sphaeroides and
Zymomonas mobilis. The tree topology and the corresponding
bootstrap values clearly show that the duplication event that
gave rise to chloroplast and cytosolic GAPDH genes of eukary-
otes occurred long before the separation of distinct organismal
lincages leading to present day eukaryotes and eubacteria. The
subtrees for GapA(B) and GapC both bear genes found in eukar-
yotic and eubacterial chromosomes. Thus, either the duplication

NATURE - VOL 367 - 27 JANUARY 1994

© 1994 Nature Publishing Group



LETTERS TO NATURE

event that gave rise to GapA4(B) and GapC genes occurred in
ancient eubacteria and the eukaryotic genes are of endosymbi-
otic origin, as we believe® >'>'?, or the gene duplication took
place in the common ancestor of eubacteria and eukaryotes. In
the former case, the five indisputably identical spliccosome
intron positions in GapA(B)/GapC (Fig. 2) were occupied in
cubacterial GAPDH genes long before the divergence of purple
and cyanobacteria (E. coli and A. variabilis). In the latter case,
they were occupied in the ancestral GAPDH gene of the
progenote.

Although the five introns conserved across present-day
GapA(B) and GapC genes are removed with the aid of spliceo-

somes, the data do not indicate how their predecessors in the
ancestral GAPDH gene were spliced. The discovery of group 11
introns in eubacteria'® has given support to the notion that these
elements may have been the precursors from which both spliceo-
somal introns and small nuclear RNAs in eukaryotic nuclei
arose''* ', Introns in GapA(B)- and GapC-ancestors within
eubacterial chromosomes may have been mechanistically group
[1, and if so, may have evolved into contemporary spliceosomal
introns in situ. The conservation of five introns at identical posi-
tions in GAPDH genes which were duplicated in ancient eubac-
teria and perhaps in progenotic DNA, lends strong support to
the exon theory of genes’.
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