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A Machine-Learning Approach Reveals That Alignment Properties Alone Can
Accurately Predict Inference of Lateral Gene Transfer from Discordant

Phylogenies

Mayo Roettger, William Martin, and Tal Dagan

Institut fiir Botanik III, Heinrich-Heine Universitit Diisseldorf, Germany

Among the methods currently used in phylogenomic practice to detect the presence of lateral gene transfer (LGT), one of
the most frequently employed is the comparison of gene tree topologies for different genes. In cases where the
phylogenies for different genes are incompatible, or discordant, for well-supported branches there are three simple
interpretations for the result: 1) gene duplications (paralogy) followed by many independent gene losses have occurred,
2) LGT has occurred, or 3) the phylogeny is well supported but for reasons unknown is nonetheless incorrect. Here, we
focus on the third possibility by examining the properties of 22,437 published multiple sequence alignments, the
Bayesian maximum likelihood trees for which either do or do not suggest the occurrence of LGT by the criterion of
discordant branches. The alignments that produce discordant phylogenies differ significantly in several salient alignment
properties from those that do not. Using a support vector machine, we were able to predict the inference of discordant
tree topologies with up to 80% accuracy from alignment properties alone.

Introduction

The phylogenetic approach for lateral gene transfer
(LGT) inference from the frequency of incongruent
branching patterns in gene trees has so far delivered widely
conflicting results, ranging from estimates that as few as
2% (Ge et al. 2005) to possibly 14% of all genes in pro-
karyote genomes are affected by LGT (Beiko, Harlow, and
Ragan 2005). Such divergent estimates using phylogenetic
tree comparisons can, in principle, be attributed to many
factors including the obvious, such as lineage sampling,
the inherent uncertainties of various approaches to phylo-
genetic reconstruction (Penny et al. 1992; Hillis 1995;
Lopez et al. 2002) and the threshold levels of support
set to score the presence of genuinely conflicting topolo-
gies. But phylogenetic trees of molecular sequences are
always inferred from multiple sequence alignments. Nei
etal. (1995) and Nei (1996) pointed out early on that align-
ment of highly diverged sequences may result in erroneous
phylogenetic reconstruction. Interest in this aspect of phy-
logeny has renewed with several reports investigating
the alignment step itself as it specifically relates to
phylogenetic inference (Landan and Graur 2007; Deusch
etal.2008; Loytynojaand Goldman 2008; Wongetal. 2008)

Here, we wished to examine the extent to which LGT
inference by the phylogenetic method might be sensitive
to the properties of alignments themselves. For this pur-
pose, we investigated the comprehensive data set com-
piled and carefully analyzed by Beiko, Harlow, and
Ragan (2005), who kindly made their data available. Their
data set is highly suitable for the present study 1) because
it consists of 22,437 carefully assembled gene families of
prokaryotic orthologs, in which paralogs have been sorted
out by using a conservative similarity cutoff (Beiko,
Harlow, and Ragan 2005, Supplementary Material on-
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line), 2) because they used a widely employed filter,
Gblocks (Castresana 2000), to exclude poorly aligned re-
gions from their analysis prior to phylogenetic reconstruc-
tion, and 3) because they used a very stringent
(conservative) threshold for the scoring of discordant phy-
logenies. In brief, Beiko, Harlow, and Ragan (2005) con-
structed a consensus supertree for the proteins encoded in
144 prokaryotic genomes and constructed from the same
data 22,437 individual phylogenetic trees containing from
4 to 144 sequences each using a Bayesian approach. They
inferred LGT only from highly significant (posterior prob-
ability > 0.95) discordant tree topologies in comparison to
the consensus supertree topology (Beiko, Harlow, and
Ragan 2005). For 5,822 of those trees, one or more
LGT was inferred on the basis of discordance to the con-
sensus topology, we designate those amino acid sequence
alignments as “LGT positive” or LGT for short. The re-
maining 16,615 of the alignments investigated by Beiko,
Harlow, and Ragan (2005) did not produce branches
(bipartitions) that were discordant (conflicting) with the
consensus supertree topology and are considered here
as “vertical gene inheritance” or VGI alignments. We ex-
amined the properties of the LGT alignments in compar-
ison to the properties of the VGI alignments.

Methods

For the analysis, we used a data set of 22,437 protein
families from 144 prokaryotes for which LGT) was in-
ferred using the phylogenetic method (Beiko, Harlow,
and Ragan 2005). The data for each protein family include
a multiple sequence alignment yielding the highest score
according to the word-oriented objective function (Beiko,
Chan, and Ragan 2005) from a set of alignments recon-
structed by several different algorithms: ClustalW
(Thompson et al. 1994), T-coffee (Notredame et al.
2000), MAFFT (Katoh et al. 2002), POA (Grasso and
Lee 2004), and PRRP (Gotoh 1996), a partial alignment
of relatively conserved regions constructed with Gblocks
(Castresana 2000), and a phylogenetic tree inferred with
MrBayes (Huelsenbeck and Ronquist 2001). Bipartitions
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in the phylogenetic tree were considered as concordant if
they overlap with the reference supertree, or discordant
otherwise, which were interpreted as LGT events (Beiko,
Harlow, and Ragan 2005).

Multiple Alignment Properties

For each protein family (alignment), we calculated
alignment properties as follows: Number of operational tax-
onomic units (OTUs) is the number of orthologs in the fam-
ily. Proportion of gaps is the proportion of gap characters in
the Gblocks output alignment. Entropy was calculated for
each Gblocks output alignment as the average entropy of its
sites. For the calculation, we used the Shannon information
content normalized by the number of OTUs in the align-
ment (Valdar 2002):
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where N5 1s the number of alignment sites, K is the al-
phabet size, which is 21 in this case (20 amino acids plus
one gap symbol), and p; .o the probability of observing the
ith character in alignment column col. The /, factor is used
to scale the entropy into a [0,1] range by the number of
OTUs (Nsq) and the alphabet size K.
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Invariant sites are positions in the Gblocks alignment
where all sequences contain the same amino acid, and in-
formative sites are defined as alignment columns containing
at least two different amino acids, each one observed in at
least two sequences at the position. Average pairwise iden-
tity is calculated as the proportion of amino acid identities
between all sequence pairs and averaged for the protein
family as follows:
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where a; . is the observed amino acid in Gblocks-align-
ment sequence i at position col.

In addition, we tested for alignment reliability using
the Heads-or-Tails (HoT) method (Landan and Graur
2007). Tails alignments were obtained by aligning the re-
versed sequences of each protein family using exactly the
same alignment procedure that was used for the original
(Heads) alignments. Column score (CS) is calculated as
the proportion of identical columns between Heads and
Tails alignments, and sum of pairs score (SPS) was calcu-
lated as the proportion of identical residue position pairs
between Heads and Tails alignments.

Each alignment comprises protein sequences from dif-
ferent species, each sequence named by Beiko et al. with
a unique pipeline id. Additional files contained information
about the original gi number in the RefSeq database (Pruitt
et al. 2005) together with the current gi number in the da-

tabase and the genome id of the sequence used by the
National Center for Biotechnology Information (NCBI).
Two hundred and twenty-three proteins in 183 alignments
had no information about the sequence except the original gi
number in the database. These database entries were re-
placed or removed from the database. In the calculation of
the number of different phyla and the classification of the
sequence into the kingdom groups, we discarded these se-
quences from the alignment. We obtained taxonomical clas-
sification information for each sequence from NCBI and
counted the number of sequences being classified as different
phyla for each cluster. We used the term archaea for clusters
that contain only sequences classified as of archaebacterial or-
igin, the term eubacteria for clusters that contain only sequen-
ces classified as of bacterial origin, and the term universal for
clusters that contain sequences of both kingdoms.

For the comparison of the property distributions be-
tween LGT and VGI alignments, the Wilcoxon nonpara-
metric test was used.

Orthologs Pairwise Distances

Protein pairwise distances between orthologs from
LGT and VGI families were calculated for several genome
pairs that were selected for their high frequency in the data:
1) Vibrio vulnificus versus Yersinia pestis (1,406 protein
pairs where both species were present in the respective pro-
tein families), 2) Brucella suis versus Mesorhizobium loti
(1,697 protein pairs), 3) Agrobacterium tumefaciens versus
M. loti (2,205 protein pairs), and 4) Bradyrhizobium
Japonicum versus M. loti (1,794 protein pairs), 5) Staphy-
lococcus aureus versus Bacillus cereus (924 protein pairs),
6) Nostoc sp. versus Pyrococcus furiosus (114 protein
pairs), and 7) Bacteroides thetaiotaomicron versus Sulfolo-
bus solfataricus (62 protein pairs). Pairwise protein distan-
ces were extracted from the distance matrix calculated
from the multiple sequence alignments with PROTDIST
(Felsenstein 1996) using Jonen-Taylor-Thornton substitu-
tion matrix (Jones et al. 1992). In addition, we calculated
pairwise distances with the same method after realigning
the orthologous sequences using MUSCLE (Edgar 2004).

Classification Procedure

Prediction of LGT (discordant tree bipartition) from
alignment properties entailed a support vector machine
(SVM) classifier (Christiani and Shawe-Taylor 2000).
For the SVM training and classifying procedures, we used
the svmtrain and svmclassify functions from the MATLAB
7.6 bioinformatics toolbox with the following parameters:
Radial basis function (RBF) kernel, RBFSigmaValue = 1,
Mlp_ParamsValue = [1,—1], MethodValue = SMO, Box-
ConstraintValue = 1, and AutoscaleValue = true. In order
to obtain significance levels for the SVM performance, we
applied 10-fold crossvalidation in each step using the small
1/10 subset for training and the 9/10 for testing. The LGT/
VGI ratio in the training set was adjusted by randomly se-
lecting different numbers of LGT and VGI samples from
the preliminary training set to form an equal-sized training
set for each validation step.
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Fic. 1.—Distributions of alignment properties in the LGT and VGI groups. Differences in the distributions of the two groups were tested by the

Wilcoxon nonparametric test (P values presented at the top of each graph).

SVM performance was evaluated by “accuracy,” that
is, the proportion of alignments correctly classified as LGT
or VGI, “sensitivity,” which is the true positive rate or the
number of true positives (LGT alignments that are classified
as such) divided by the sum of true positives plus false neg-
atives (LGT alignments classified as VGI), and “specific-
ity,” as the true negative rate or the number of true
negatives (VGI alignments that are classified as such) di-
vided by the sum of true negatives plus false positives
(VGI alignments classified as LGT).

To test the performance of the classifier under different
LGT/VGI proportions in the training set and in the test set,
we used LGT proportions ranging from 25% to 75% while
including all 11 alignment properties.

To explore the contribution of the different features
and their combinations to the classification performance,
we tested all possible 2,047 combinations of the 11 align-
ment features analyzed in this study using a training set with
equal proportions of LGT and VGI alignments.

Multivariate Analysis

We performed principal component analysis (PCA)
using the princomp function of MATLAB 7.6. The data
for each alignment property were normalized before the
analysis, so that all properties had only values ranging from
Zero to one.

Results and Discussion

It is known that the probability of obtaining incorrect
trees increases with the number of sequences (OTUs)
analyzed (Nei 1996). The LGT alignments investigated
here contained significantly larger numbers of OTUs
(P< 0.0001) than the VGI alignments (fig. 1A). No VGI
alignment in the present sample contains more than 65 se-
quences, whereas 5% of the LGT alignments contain >65 se-
quences. It is also known that for a given level of sequence
divergence, the probability of obtaining incorrect trees is
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Table 1
General Statistics of Protein Family Alignment Properties Grouped by LGT and VGI Categories

Range (Min—Max) Mean + SD Median
MSA Parameter VGI LGT VGI LGT VGI LGT
Normalized Shannon entropy 0.000-0.772 0.002-0.777 0.294 + 0.151 0.343 £ 0.117 0.292 0.341
Average pairwise identity 0.160-1.000 0.160-0.990 0.621 + 0.176 0.523 £ 0.132 0.610 0.510
Proportion of gaps 0.000-0.675 0.000-0.671 0.052 £ 0.072 0.080 £ 0.084 0.025 0.053
Number of OTUs 4-65 4-144 6.6 +42 19.0 + 21.7 5.0 11.0
Alignment length 14-3,135 31-2,837 325.0 £203.9 352.0 £ 212.3 287.0 311.0
Proportion of invariant sites 0.000-1.000 0.000-0.992 0.381 £+ 0.247 0.191 £ 0.160 0.337 0.153
Proportion of informative sites 0.000-1.000 0.000-1.000 0.524 £ 0.250 0.366 £ 0.188 0.502 0.343
CS (HoT) 0.000-1.000 0.000-1.000 0.856 + 0.212 0.823 £ 0.213 0.948 0.905
SPS (HoT) 0.037-1.000 0.053-1.000 0.939 £ 0.118 0.943 £ 0.111 0.986 0.984
Number of different phyla 1-11 1-16 1.323 £ 0.708 2.651 £ 2.475 1.0 2.0

Note.—The data set contains 22,437 protein family alignments, 5,822 of which are LGT and 16,615 are VGI.

higher when short sequences are analyzed than when longer
sequences are analyzed (Nei 1996). However, the LGT protein
families investigated here contain sequences that are signifi-
cantly (P < 0.0001) longer than VGI protein families (supple-
mentary fig. S1, Supplementary Material online), producing
also longer alignments (mean = 352; table 1) than the VGI
alignments (mean = 325; table 1) (fig. 1B), suggesting that
if incorrect trees are involved in LGT inference in the present
data, then short sequences are not the cause.

The probability of obtaining incorrect trees increases
when sequence divergence becomes too great (Nei 1996).
Several alignment properties can address the issue of se-
quence divergence. Normalized Shannon entropy provides
an estimate for the average number of different amino acids
that occur per site in an alignment (Valdar 2002). The mean
normalized Shannon entropy of LGT alignments is about
17% higher than for the VGI alignments in the present data
(fig. 1C), a highly significant difference (P < 0.0001). Av-
erage sequence identity across all pairwise comparisons is
a very simple and robust measure of sequence variability
in an alignment. The average pairwise identity of the VGI
alignments (mean = 0.621; table 1) is significantly higher
(P < 0.0001) than in the LGT alignments (mean =
0.523) (fig. 1D). In addition, LGT alignments contain on av-
erage 50% more gaps than VGI alignments (fig. 1E; table 1).
Another proxy for sequence divergence in an alignment is
the proportion of invariant sites, the mean of which is 2-fold
higher (P < 0.0001) in the VGI alignments than in the LGT
alignments (fig. 1F). Furthermore, the proportion of infor-
mative sites, defined here as alignment columns containing
at least two different amino acids each observed in at least
two sequences at the position, is significantly lower (P <
0.0001) in the LGT alignments (mean = 0.366; table 1) than
in the VGI alignments (mean = 0.524; table 1) (fig. 1G).

Thus, several alignment parameters that are known to
increase the probability of obtaining incorrect trees—higher
numbers of OTUs, sequence divergence exceeding 50%
differences on average, and low numbers of informative
sites—are significantly different in the LGT and the VGI
alignments, and in all cases, LGT alignments are skewed
toward the value that increases the probability of obtaining
an incorrect tree. This does not directly indicate that the
LGT alignments have produced branches that are highly
supported but nonetheless incorrect (Delsuc et al. 2003),
yet the tendency is consistent.

The proportion of invariant sites, the proportion of
informative sites, and average pairwise identity show an
inverted trend to the Shannon entropy in the PCA of the
total data set (fig. 2). These three measures correlate neg-
atively with Shannon entropy (r = —0.84, r = —0.82, and
r = —0.97, P < 0.0001, respectively, supplementary fig.
S2A—C, Supplementary Material online). This means that
the less variable alignments may lack phylogenetic infor-
mation due to high proportions of invariable sites, where
the proportion of informative sites in these alignments will
still be high. Yet these correlation coefficients are weaker in
the LGT alignments (r = —0.70 and r = —0.77 and r =
—0.95, P < 0.0001, respectively, supplementary fig. S2D—
F, Supplementary Material online), than in the VGI align-
ments (r = —0.87 and r = —0.84 and r = —0.98, P <
0.0001, respectively; supplementary fig. S2G—I, Supple-
mentary Material online) so that even though the LGT
alignments are more variable than the VGI alignments, they
generally contain not only fewer invariant sites but also
fewer informative sites.

High alignment variability in the LGT alignments
could be also the result of large numbers of sequences per
alignment, as is the case for the LGT group alignments
(fig. 1A). However, we found no correlation between num-
ber of OTUs and normalized entropy ( = 0.01, P = 0.27),
and only weak correlation between number of OTUs and av-
erage pairwise identities (r =—0.11, P < 0.0001), or the
proportion of gaps (r = 0.23, P < 0.0001; supplementary
fig. S3, Supplementary Material online). Also, the number
of phyla represented in the alignment, another possible source
for higher alignment variability, is higher in the LGT groups
than in the VGI group (fig. 1H). But this measure as well
shows no significant correlation with any of the variability
measures (supplementary fig. S4, Supplementary Material
online). Hence, the high variability of the LGT alignments
is not explained by the large number of sequences or the large
number of phyla represented in these families.

The more variable the sequences in an alignment are,
the more difficult they are to align and the more likely it is
that the alignment procedures themselves can produce col-
lections of site patterns that induce topological effects at the
tree-building stage (Landan and Graur 2007; Wong et al.
2008). Thus, the LGT alignments, which are more variable
than those in the VGI group, might be more error prone at
the alignment step than the VGI alignments. To estimate
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this effect, we compared alignment reliability of LGT and
VGI alignments using the HoT method (Landan and Graur
2007). For these HoT comparisons, we realigned the orig-
inal sequences (i.e., before filtering with Gblocks) as kindly
provided by Beiko, Harlow, and Ragan (2005) in the C-to-
N-direction to form the Tails alignments and compared
them with the original (Heads) alignments. Both HoT pa-
rameters show an inverted trend to the number of OTUs,
number of different phyla, and the proportion of gaps in
the PCA analysis (fig. 2). Moreover, we found that the
LGT alignments have a significantly (P < 0.0001) lower
CS, which is the proportion of site columns reconstructed
identically in the Heads and Tails alignment (fig. 1/), and
a slightly but significantly (P < 0.0001) lower SPS, which
is the proportion of identically reconstructed site pairs
(fig. 1J), than the VGI alignments. Hence, LGT alignments
contain significantly more alignment artifacts that are intro-
duced by the sequence alignment process alone, indepen-
dent of subsequent tree-building procedures. The bias in
alignment quality within the LGT set is unlikely to be re-
lated with the erroneous guide tree used for the alignment
because alignment errors are only marginally affected by
the guide-tree quality (Landan and Graur 2008). Beiko,
Harlow, and Ragan (2005) used a very conservative rule
for inclusion in the LGT set that comprises only trees hav-
ing at least one highly significant (“posterior probability” >
0.95) discordant branch, whereas all other trees are consid-
ered as VGI. This results in abias toward highly supported
(though not necessarily true) trees in the LGT set, where the
proportion of highly significant branches per tree is 47 *
28% versus 48 + 40% (median 41% vs. 33%) in the
V@I set. To test if this bias is related to the differences
we found in the alignment properties, we deleted from
the VGI set those alignments yielding trees with no highly
significant branches, leaving 13,811 alignments yielding
trees having at least one highly significant (posterior prob-
ability > 0.95) concordant branch. This resulted in a set of
trees, designated here VGI9S, having a much higher pro-
portion of highly significant branches per tree (57 =+

37%, median 50%). A comparison of alignment properties
between the LGT and VGI9S sets resulted in identical con-
clusions to those detailed above for the comparison be-
tween the LGT and VGI sets (supplementary fig. S5,
Supplementary Material online), so that the bias toward
highly resolved trees in the LGT set has no relation to
the bias in multiple alignment properties.

The comparison of alignment properties between VGI
and LGT alignments summarized so far (fig. 1; table 1)
shows that the LGT alignments are more variable than
the VGI alignments. It is thus possible that the laterally
transferred protein-coding sequences are inherently more
variable than vertically inherited ones. To test this possibil-
ity, we compared pairwise protein distances between ge-
nomes to see if there were differences between LGT and
VGI sequences with respect to overall sequence conserva-
tion. If so, then orthologous sequence pairs from VGI align-
ments should have smaller protein distances (i.e., should be
more conserved) than orthologous pairs from LGT align-
ments. We tested that hypothesis for seven frequent genome
pairs having proteins in both groups. The contrary was ob-
served: Orthologous pairs from LGT alignments are more
conserved (i.e., have smaller protein distances) than orthol-
ogous pairs from VGI alignments (fig. 3; supplementary
fig. S6, Supplementary Material online). Hence, the higher
variability observed in LGT alignments cannot be ex-
plained by a systematic bias in protein conservation among
inherited versus laterally transferred proteins. This conclu-
sion seems to contradict the bias toward variable multiple
sequence alignments in the LGT set. A possible reconcil-
iation between these two findings may be found in a study
by Elhaik et al. (2006) showing that conserved proteins
have higher probability of being detected by a similarity
search, which leads to the composition of larger protein
families, hence alignments with more OTUs that are prob-
ably more difficult to align. However, we found no corre-
lation between the number of OTUs and the different
alignment variability measures in our data set (supplemen-
tary fig. S3, Supplementary Material online).
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Clustering of conserved orthologous proteins results
not only in bigger families, but also in families having pro-
teins from many taxomonic groups (supplementary fig. S4A,
Supplementary Material online). However, the number of
phyla alone is unlikely to reflect the relatedness among
the sequences in the protein family because a protein family
including sequences from eubacteria and archaebacteria is
expected to contain more variability than a protein family
including sequences from eubacteria only. Therefore, we
divided the multiple alignments into those that comprise
1) eubacterial proteins only, 2) archaeal proteins only, and
3) “universal” alignments including proteins from both
groups. A comparison of alignment properties among these
three categories shows that universal families are much
bigger than either eubacterial or archaeal families (fig. 4A).
Moreover, all variability measures show that the universal
alignments are more variable than alignments in the other
two categories: Their entropy is higher (fig. 4C), their mean
pairwise distance is higher (fig. 4D), and they contain more
gaps (fig. 4F) and less invariant sites (fig. 4F). Universal
alignments also seem to be of lower quality, in that they
contain fewer informative sites and their alignments are less
reliable (fig. 4G-1).

Finally, we tested for dependency between the taxo-
nomical composition of the alignments and their classifica-
tion as VGI or LGT and found these two properties are

significantly dependent (P < 0.001, using x> test). LGT
alignments comprise about 30% of the archaeal or eubac-
terial alignments (as in the total data), but they are overrep-
resented in the universal group where they comprise 57% of
the multiple alignments (fig. 4J). This leads us to conclude
that the clustering of conserved sequences resulted in pro-
tein families that are not only large (as predicted by Elhaik
et al. 2006) but also have a universal taxonomic distribution
that covers much more diverse sequences and that seems to
be the reason for their variability.

Our results so far suggest that alignments possessing
properties that are known to increase the probability of ob-
taining incorrect branches are more frequent in the LGT
group than in the VGI group. We then asked a slightly he-
retical question: Can we predict whether an alignment is
likely to generate a tree with a strongly supported discor-
dant branch on the basis of alignment properties alone? For
this, we used an SVM classifier (Christiani and Shawe-
Taylor 2000). In brief, a SVM is an algorithm that, provided
with a learning set of features that might or might not cor-
relate to a classificatory decision of the type “yes” or “no,”
gains experience with the learning set, and then is asked to
classify objects, correctly if possible, on the basis of features
alone. In the present case, the features correspond to align-
ment parameters as summarized in figure 1 and table 1, and
the desired classification is the proper assortment of the
alignment into LGT or VGI groups as predetermined by
phylogenetic analysis. The classification performance is
evaluated by its accuracy, sensitivity, and specificity (see
Methods).

The SVM algorithm was thus trained and queried us-
ing the present alignments. In order to calculate SVM per-
formance and standard deviations (SDs), we performed
a 10-fold crossvalidation using 1/10 of the data in each step
for training and the rest for testing. Accuracy, sensitivity,
and specificity of the classifying process are to a vast extent
influenced by the ratio of LGT/VGI in the training set. Ac-
curacy and sensitivity are maximal when the proportion of
LGT in the training set is equal to the total data (25%) and
they decrease when higher LGT proportions are used. The
specificity of the SVM classification is minimal at 25%
LGT alignments in the training set and increases when
higher proportions are used. When LGT proportion in
the training set is fixed to 50%;, all SVM performance meas-
ures are found in equilibrium (fig. 5A). The ratio of LGT/
VGI alignments in the test set has no influence on the per-
formance of the SVM classifier (fig. 5B). In our SVM clas-
sification procedure, we used training sets having an LGT/
VGl ratio = 1 (see Methods). Performance of the classify-
ing process was evaluated by trying all possible 2,047 com-
binations of the 11 properties to explore if there is a set of
features that, if omitted from the training process, will de-
teriorate the results, or if there are some features that tend to
impair the performance when included in the analysis.

Table 2 shows the combination of features that yielded
the top performance values of accuracy, sensitivity, and
specificity. We cannot really decide which is the best com-
bination of feature vectors to be included in the training pro-
cess because widely different combinations of features
induce consistent results in the classification performance.
But it seems that for equally high performance values for


supplementary fig. S4A
Supplementary Material

LGT Inference from Trees Can Be Predicted with 80% Accuracy 1937

A B C
Universal [} S - - (T} - + Tt
Archaea [[}[H e e Il e S
Eubacteria {450 AT -+ {1 et

0 25 50 75 100 125 150 0 1000 2000 3000 0 02 04 06 08 1

Number of OTUs Alignment length Normalized entropy
D E E
Universal O {1
Archaga et -+ b -t
Eubacteria | T} i -~ e I B
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
Average pairwise identity Proportion of gaps Invariant sites
G
Universal f-{_J_ - - ++

Archaea | Ff [} B+
Eubacteria -]

0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1

Informative sites CS (HoT) SPS (HoT)
J LGT W VGI
Universal
Archaea
Eubacteria

0 02 04 06 08 1
Proportion LGT / VGI

FiG. 4 —Differences in alignment properties for alignments containing only eubacterial sequences, only archaebacterial sequences, or sequences of
both kingdoms (universal).

the three parameters (e.g.,combinations yielding accuracy =  ular importance. A complete table with all 2,047 tested com-
0.797 or accuracy = 0.796), the number of OTUs, entropy,  binations of features can be found in supplementary table S1,
average pairwise identity, and number of phyla are of partic-  Supplementary Material online.
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Table 2
Prediction of LGT/VGI Using an SVM Classifier Trained with Alignment Properties

Combination of Training Parameters

Number of
OTUs

Shannon
Entropy

Average
Pairwise
Identity

Proportion
of Gaps

Proportion
of Invariant
Sites

Proportion
of Informative
Sites

Alignment
Length

CS (HoT)

SPS (HoT)

Number of
Different Phyla

Kingdom
Affiliation

Performance

Accuracy

Sensitivity

Specificity

v
i\

v

v

v
v
Vv
v

v

v

v

Vv

v

v

v

<< < < < < < <

<

Y

v

<< < < <

0.797 £ 0.009
0.796 = 0.009
0.796 = 0.007
0.796 = 0.009
0.794 = 0.009
0.794 £ 0.012
0.794 £ 0.007
0.794 = 0.012
0.794 = 0.009
0.793 £ 0.008
0.735 = 0.009
0.743 £ 0.008
0.711 £ 0.041
0.733 £ 0.012
0.765 £ 0.019
0.784 £ 0.018
0.771 £ 0.013
0.778 £ 0.015
0.736 = 0.012
0.762 + 0.014
0.544 £ 0.015
0.598 = 0.013
0.576 £ 0.011
0.586 = 0.013
0.665 = 0.019
0.601 £ 0.018
0.590 = 0.012
0.592 + 0.019
0.582 £ 0.011
0.562 = 0.014

0.833 + 0.020
0.835 + 0.019
0.834 + 0.015
0.830 + 0.017
0.832 + 0.020
0.828 + 0.021
0.833 + 0.015
0.827 + 0.025
0.831 £ 0.019
0.829 + 0.016
0.931 + 0.020
0.887 + 0.087
0.884 + 0.081
0.873 + 0.091
0.867 + 0.093
0.851 + 0.061
0.849 + 0.066
0.848 + 0.063
0.848 + 0.091
0.847 + 0.082
0.450 + 0.031
0.529 + 0.025
0.501 + 0.023
0.516 + 0.027
0.623 + 0.034
0.536 + 0.037
0.522 + 0.028
0.525 + 0.040
0.511 + 0.024
0.484 + 0.030

0.692 + 0.023
0.685 = 0.021
0.687 = 0.021
0.699 = 0.017
0.688 = 0.025
0.698 = 0.018
0.685 £ 0.019
0.700 = 0.025
0.687 = 0.021
0.692 + 0.020
0.174 = 0.022
0.331 £ 0.247
0.218 = 0.074
0.334 + 0.229
0.474 £ 0.327
0.592 + 0.215
0.551 £ 0.216
0.576 = 0.224
0.419 = 0.235
0.519 £ 0.274
0.812 = 0.033
0.794 + 0.024
0.790 = 0.025
0.787 £ 0.028
0.786 = 0.025
0.785 £ 0.037
0.785 = 0.034
0.783 = 0.043
0.782 + 0.027
0.782 = 0.029

Note.—Alignment properties included in the training process are marked with v. The LGT/VGI ratio in the training set was adjusted to 1. Only combinations yielding the best 10 performance values for accuracy, sensitivity, and
specificity are shown, respectively. Definitions of accuracy, sensitivity, and specificity can be found in the text. A table presenting the performance of all possible combinations is presented in the Supplementary Material online.

e 1 1931190}1 Q€61


Supplementary Material

In other words, the alignment properties of the LGT
and VGI groups, although having strongly overlapping dis-
tributions for all parameters (fig. 1; table 1), are nonetheless
sufficiently different in a consistent manner that we can cor-
rectly predict about 78% of the time whether a Bayesian
phylogenetic inference will generate a branch from a given
alignment that is sufficiently discordant to be scored as an
LGT. On the strength of this finding and circumstance that
for each alignment parameter the LGT alignments were al-
ways skewed toward values that are known from simulation
studies to generate incorrect branches (Nei 1996), it is likely
that reliable construction of phylogenetic trees is affected
and incorrectly reconstructed branches may be a possible
source of LGT inference. The correlations are consistent
with the view (Landan and Graur 2007) that sequence sets
problematic at the level of alignments are likely to be prob-
lematic at the level of phylogenetic inference as well.

In principle, one could use our trained SVM on other
alignment data sets in order to predict which alignments
will result in discordant branches comparing with a refer-
ence tree. However, one would still have to distinguish be-
tween discordant branches stemming from either genuine
LGTs or phylogenetic reconstruction artifacts. The results
presented here indicate that the latter are more frequent in
problematic alignments; hence, alignment quality has high
impact on evolutionary inference from phylogenetic trees.
A similar observation was recently presented for phyloge-
netic inference of ancient LGTs during the endosymbiosis
of plastids (Deusch et al. 2008). This indicates that it is
important to monitor and assess alignment quality in
large-scale phylogenetic analyses, particularly those imple-
menting automated or semiautomated phylogeny pipelines.

Supplementary Material

Supplementary tables S1-S4 and supplementary fig-
ures S1-S6 (and additional supporting figures) are available
at Molecular Biology and Evolution online (http:/
www.mbe.oxfordjournals.org/).
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