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Abstract

Protein profiles of mitochondria isolated from the heterotrophic chlorophyte Polytomella sp. grown on ethanol at
pH 6.0 and pH 3.7 were analyzed by Blue Native and denaturing polyacrylamide gel electrophoresis. Steady-state
levels of oxidative phosphorylation complexes were influenced by external pH. Levels of an abundant, soluble,
mitochondrial protein of 85 kDa and its corresponding mRNA increased at pH 6.0 relative to pH 3.7. N-terminal
and internal sequencing of the 85 kDa mitochondrial protein together with the corresponding cDNA identified it
as a bifunctional aldehyde/alcohol dehydrogenase (ADHE) with strong similarity to homologues from eubacteria
and amitochondriate protists. A mitochondrial targeting sequence of 27 amino acids precedes the N-terminus of
the mature mitochondrial protein. A gene encoding an ADHE homologue was also identified in the genome of
Chlamydomonas reinhardtii, a photosynthetic relative of Polytomella. ADHE reveals a complex picture of se-
quence similarity among homologues. The lack of ADHE from archaebacteria indicates a eubacterial origin for the
eukaryotic enzyme. Among eukaryotes, ADHE has hitherto been characteristic of anaerobes since it is essential to
cytosolic energy metabolism of amitochondriate protists such as Giardia intestinalis and Entamoeba histolytica. Its
abundance and expression pattern suggest an important role for ADHE in mitochondrial metabolism of Polytomella
under the conditions studied. The current data are compatible with the view that Polytomella ADHE could be
involved either in ethanol production or assimilation, or both, depending upon environmental conditions. Presence
of ADHE in an oxygen-respiring algal mitochondrion and co-expression at ambient oxygen levels with respiratory
chain components is unexpected with respect to the view that eukaryotes acquired ADHE genes specifically as an
adaptation to an anaerobic lifestyle.

Abbreviations: ADHE, aldehyde/alcohol dehydrogenase; ADH, alcohol dehydrogenase; ALDH, aldehyde de-
hydrogenase; BN-PAGE, blue native polyacrylamide gel electrophoresis; Fe-ADH, iron-dependent alcohol
dehydrogenase; MTS, mitochondrial targeting sequence; OXPHOS, oxidative phosphorylation; PFL, pyruvate
formate-lyase

Introduction

The colorless chlorophytes of the genus Polytomella
are members of a single monophyletic clade, the Re-
inhardtii clade (Proschold et al., 2001), and share

The nucleotide sequence data reported will appear in the DDBJ,
EMBL and GenBank Nucleotide Sequence Databases under the
accession number AJ495765

a common ancestor with their photosynthetic relat-
ives, Chlamydomonas reinhardtii and Volvox carterii
(Melkonian and Surek, 1995; Nakayama et al., 1996).
Polytomella is found in various habitats including
freshwater ponds and greenhouse soils (Prinsgsheim,
1955). In the laboratory the algae can be grown on a
great variety of carbon sources and under a wide range
of pH values (Lwoff, 1941; Wise, 1955, 1959; Atteia
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et al., 2000). The growth of this alga is often associ-
ated with significant changes in the pH of the culture
medium (Atteia et al., 2000). The ability of the alga to
adapt to different habitats implies a tight regulation of
the intracellular concentration of solutes and protons.

Polytomella sp. is able to grow on ethanol at pH
below 7.0 whereby its metabolism tends to acidify the
growth medium, although it can also be grown un-
der conditions where the pH is maintained constant
(Atteia et al., 2000). Studies on Polytomella sp. cells
grown on ethanol in the presence of non-metabolizable
buffers have shown that the external pH influences the
function and biogenesis of mitochondria. The rates
of oxygen uptake in the presence of substrates like
succinate, malate or ethanol are 20-25% higher in mi-
tochondria isolated from cells grown at pH 3.7 than
in mitochondria from cells grown at pH 6.0 (Atteia
et al., 2000). The steady-state accumulation of mito-
chondrial proteins is also affected by the external pH.
Mitochondria from cells grown at pH 3.7 contained
more polypeptides of 30 kDa or less, one of which
was cytochrome c (Atteia et al., 2000), relative to mi-
tochondria from cells grown at pH 6.0. At present, the
identity of the different mitochondrial protein patterns
of cells grown at pH 6.0 and pH 3.7 is not known.

The aim of this study was to further characterize
the influence of the external pH on the mitochondrial
protein content in Polyfomella sp. grown on ethanol
and to identify proteins that exhibit a pH-dependent
accumulation. Here we report changes in the levels
of oxidative phosphorylation (OXPHOS) complexes
in mitochondria isolated from Polytomella sp. cells
grown on ethanol at pH 6.0 and pH 3.7 and in the
levels of an 85 kDa soluble protein that we identified,
on the basis of its amino acid sequence, as a bifunc-
tional aldehyde/alcohol dehydrogenase (ADHE). An
ADHE homologue is also present in C. reinhardtii, a
photosynthetic relative of Polytomella.

Materials and methods

Isolation and subfractionation of Polytomella sp.
mitochondria

Polytomella sp. (198.80, E.G. Pringsheim) was grown
in Erlenmeyer flasks with cotton stoppers allowing for
ample gas exchange at room temperature on ethanol at
pH 3.7 and at pH 6.0, or on acetate at pH 6.0 (Atteia
et al., 2000). Mitochondria were isolated as described
(Atteia et al., 2000). Mitochondria, resuspended in
0.2 M mannitol, 5 mM potassium phosphate pH 7.2
at a concentration of 10-12 mg/ml protein in the pres-
ence of 0.5 mM PMSF and 2 mM amino caproic acid,

were sonicated three times for 10 s, and centrifuged
for 1 h at 100000 x g.

Protein analysis

Mitochondria and mitochondrial subfractions were
freshly prepared for Blue Native (BN)-PAGE ana-
lysis. The soluble mitochondrial fraction was supple-
mented with 1% dodecyl maltoside (rn-dodecyl B-D-
maltoside) and 0.25% Coomassie Serva Blue G. Mito-
chondria and mitochondrial membranes were washed
twice in 250 mM sorbitol, 15 mM Bis-Tris pH 7.0;
for solubilization, the proteins were resuspended at
15 mM Bis-Tris, 750 mM amino caproic acid pH 7.0
containing 2% dodecyl maltoside at a final protein
concentration of 5 mg/ml. The sample was centrifuged
for 20 min at 40000 x g; the solubilized material
was then supplemented with Coomassie Serva Blue
G (one half of the volume of added dodecyl maltos-
ide). All the samples were loaded on BN-PAGE with
acrylamide gradients of 5-12% or 5-15% (Schig-
ger and von Jagow, 1991). Staining for NADH de-
hydrogenase activities on BN-PAGE was performed
as described (Kuonen et al., 1986). Electroblotting
of BN-PAGE lanes was done as described (Jinsch
et al., 1996). Immunodetection was carried out by
the enhanced chemiluminescence peroxidase method
(ECL™ Amersham-Pharmacia Biotech) with anti-
sera raised against the § subunit of the bovine mi-
tochondrial ATP synthase, the COXIIA subunit of
Polytomella sp. cytochrome ¢ oxidase, and the core
I subunit of Neurospora crassa bc; complex. Entire
lanes of BN-PAGE were used to resolve the proteins
in a 2D-Tricine-SDS-PAGE (15% acrylamide) (Jdnsch
et al., 1996). For sequence determination, a lane of
BN-PAGE with soluble mitochondrial proteins (1 mg
of protein) was resolved on 2D-SDS-PAGE; after elec-
trophoresis, the proteins were electrotransferred onto
ProBlot membrane and stained with Coomassie blue
R-250 (Atteia et al., 1997). The proteins of interest
were excised and subjected to N-terminal or internal
sequencing as described (van Lis et al., 2003). Protein
concentrations were determined according to Mark-
well et al. (1978). Pre-stained molecular mass markers
(Invitrogen) were used.

Isolation of Polytomella sp. ADHE cDNA

Two oligodeoxynucleotides, 5'-GAGCAGAAGTCC-
AAGTCYGAYGAGG-3' and 5'-CTTCTCRGCRTC-
RGCGGARGG-3/, were designed from the N-
terminal sequence (residues Glu-6 to Glu-13 of the
mature protein) and the internal sequence 152 (Pro-688
to Lys-694) of Polytomella sp. mature ADHE pro-



tein. PCR amplification was carried out with 7ag DNA
polymerase (Qiagen). Total Polytomella sp. DNA
was denatured for 5 min at 94 °C, then subjected to
three cycles of 1 min denaturation at 94 °C, 45 s
annealing at 60 °C, and 3 min extension at 72 °C;
and subjected to 27 cycles of 1 min denaturation at
94 °C, 45 s annealing at 62 °C, and 3 min extension
at 72 °C. The obtained 2 kb PCR product (pAdhE)
was cloned into pGEM-T Easy Vector (Promega)
and sequenced. pAdhE was further used to screen a
AZAPII Polytomella cDNA library. The sequence of
the longest cDNA isolated (1.6 kb) from 5000 p.f.u.
screened overlapped the 3’ end of pAdhE PCR product
by 300 bp. The 5’-end sequence of Polyromella sp.
ADHE c¢DNA was determined by the RNA ligase-
mediated rapid amplification of cDNAs ends method
(RLM-RACE, Ambion), as indicated by the provider,
and with total RNA from cells grown on acetate
at pH 6.0. The gene-specific primers used were 5'-
GGCTGTAAACGAACTCGGAGGCGAAG-3’ (cor-
responding to residues Phe-81 to Ser-88 of the mature
protein) and 5'-GCGGCGCGGAAGATCTTGTCG-3'
(residues Asp-42 to Ala-47). The PCR steps were car-
ried out at 60 °C. Sequencing was done at the Unidad
de Biologia Molecular (IFC-UNAM) and at MWG Bi-
otech. Inc. (USA). The Polytomella sp. ADHE cDNA
sequence can be found in the DDBJ/ EMBL/GenBank
databases under the accession number AJ495765.

DNA and RNA analysis

Total Polytomella sp. DNA isolated according to New-
man et al. (1990) was digested with restriction en-
zymes, separated on a 1% agarose gel, and transferred
onto Hybond-N* membranes (Amersham Pharmacia
Biotech.) according to standard protocols (Sambrook
et al., 1989). Membranes were hybridized overnight
at 65 °C with the pAdhE PCR product and washed for
2 x 20 min at 65 °C in 0.2x SSC and 0.5% SDS. Total
RNA from Polytomella sp. cells was isolated with Tri-
zol Reagent (Gibco-BRL), separated on a 1% agarose
gel, and transferred onto Hybond-N" membranes. Hy-
bridization was carried out overnight as previously
described (Atteia et al., 2000). The membranes were
washed for 2 x 20 min, at 42 °C in 1x SSC and
0.5% SDS. DNA probes pAdhE (see above) and TubB1
from Polytomella agilis (Conner et al., 1989; Atteia
et al., 2000) were labeled with [a->2P]dCTP with the
Random Primer labeling kit (Gibco-BRL).

Sequence analysis

EST clones of C. reinhardtii were obtained from the
ChlamyEST database at http://www.biology.duke.edu/
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chlamy_genome/cgp.html with the WU-TBLASTN
program. Searching for an ADHE gene in the
C. reinhardtii genome was done with the site
http://genome.jgi-psf.org/cgi-bin/browserLoad/
3e7f2c99428ddae9031d6856. Protein sequence data
were retrieved from Swiss-Prot + TrEMBL (Bair-
och and Apweiler, 2000) and GenBank, non-
redundant protein sequence databases (Benson et al.,
2000), with the gapped BLASTP program with
default gap penalties and the BLOSUM 62 sub-
stitution matrix (Altschul er al., 1997). Molecu-
lar mass and pl were calculated with the Com-
pute pI/MW tool (Bjellqvist et al., 1994). Motif
searching was done with the Integrated Protein Clas-
sification Database (iProClass) (pir.georgetown.edu)
software. Sequences were aligned with ClustalW
(Thompson et al., 1997). Protein logdet dis-
tances (Lockhart et al., 1994) were -calculated
with the LDDist program available at the website
http://artedi.ebc.uu.se/molev/software/LDDist.html
and used for constructing neighbor-joining trees
(Saitou and Nei, 1987) and planar networks. Planar
networks were constructed with NeighborNet (Bryant
and Moulton, 2002) and SplitsTree (Huson, 1998).

Results

Identification of the major OXPHOS complexes from
Polytomella sp.

Mitochondria from Polytomella sp. cells grown on eth-
anol at pH 6.0 were solubilized with dodecyl maltoside
and analyzed on BN-PAGE. As shown in Figure 1A,
the pattern of Polytomella sp. mitochondrial protein
complexes contrasts with the well-characterized pat-
tern of beef heart mitochondrial complexes (Schig-
ger and von Jagow, 1991). The major Polytomella
OXPHOS complexes were identified by immunoblot
analysis and specific activity staining. An antiserum
against subunit 8 of bovine complex V (FoF;-ATP
synthase) detected a single band of at least 1600 kDa
on BN-PAGE (Figure 1B). Thus, like in C. reinhardtii
(van Lis et al., 2003), Polytomella sp. complex V
runs as a dimer. The incubation of a BN-PAGE lane
with nitroblue tetrazolium and NADH (Kuonen et al.,
1986) led to the detection of two bands of ca. 980 and
250 kDa exhibiting NADH dehydrogenase activity
(Figure 1B). Based on its mobility on BN-PAGE and
on its polypeptide composition (see Figure 2B), the
980 kDa band was identified as complex I (NADH:Q
oxidoreductase); the band of 250 kDa was not iden-
tified. The 500 kDa protein complex was assigned
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Figure 1. Identification of mitochondrial protein complexes from
Polytomella sp. by BN-PAGE. A. 5-15% BN-PAGE of mitochon-
drial proteins from bovine heart (beef) (400 wg) and from Poly-
tomella sp. cells grown on ethanol at pH 6.0 (Ps.) (600 ug).
The most prominent bands of bovine mitochondria correspond to
the OXPHOS components: complex I (NADH:Q oxidoreductase),
complex II (succinate:Q oxidoreductase), complex III (QHy:cyt ¢
reductase), complex IV (cytochrome ¢ oxidase) and complex V
(FOF1-ATP synthase). The apparent molecular masses of the bovine
protein complexes are from Schigger and von Jagow (1991) and
Carroll et al. (2002). B. Identification of Polytomella sp. major OX-
PHOS complexes. NADH-NBT: a BN-PAGE lane was incubated
in the presence of NADH and nitroblue tetrazolium; * indicates
the protein complexes that exhibit NADH dehydrogenase activity.
Immunoblots: BN-PAGE lanes were transferred to nitrocellulose
and probed with the following antisera: b-F;, against subunit
of bovine FyF|-ATPase; core I, against N. crassa core I; COXIIA,
against Polytomella sp. COXIIA subunit. The apparent molecular
masses of Polytomella sp. respiratory complexes were estimated
using the bovine OXPHOS complexes as markers.

to Polytomella sp. complex III (QH»:cyt ¢ oxidore-
ductase) on the basis of its detection with an antiserum
against N. crassa core 1 subunit. The position of
complex IV (cytochrome ¢ oxidase) was determined
with an antiserum against the COXIIA subunit (Pérez-
Martinez et al., 2001). As shown in Figure 1B, this
antibody recognized multiple bands on BN-PAGE in
the range of 150 to 180 kDa, none of which coin-
cided with the strong band at 200 kDa (Figure 1B;
see below). Therefore, in contrast to complex IV from
various sources, including mammals (Schigger and
von Jagow, 1991), plants (Jiansch ef al., 1996) and
C. reinhardtii (van Lis et al., 2003), Polytomella com-
plex IV does not appear as a major band on BN-PAGE
(Figure 1A).

External pH affects accumulation of mitochondrial
protein complexes

BN-PAGE patterns of mitochondria isolated from
Polytomella sp. cells grown on ethanol at pH 6.0
and pH 3.7 were qualitatively similar but the relative
abundance of protein complexes differed (Figure 2A).
BN-PAGE and 2D-SDS-PAGE (Figure 2B) showed
that the levels of complex V were significantly higher
in mitochondria from cells grown at pH 6.0 than in mi-
tochondria from cells grown at pH 3.7. In contrast, the
levels of respiratory complexes I and III were clearly
lower in mitochondria from cells grown at pH 6.0 than
in mitochondria from cells grown at pH 3.7.

Besides the proteins of the OXPHOS system, sev-
eral other proteins showed pH-dependent accumula-
tion. One of them was a protein of 85 kDa which
belongs to the aforementioned 200 kDa complex vis-
ible on BN-PAGE above complex IV (Figures 1 and
2). Higher levels of the 85 kDa protein were found
in mitochondria from cells grown at pH 6.0 (Figure 2,
arrow). The N-terminal sequence of the 85 kDa protein
is reported in Table 1.

2D-SDS-PAGE analysis of soluble protein complexes
in Polytomella sp.

Mitochondria from cells grown on ethanol at pH 6.0
were fractionated into their soluble and membrane-
bound components and the protein complexes in the
subfractions were further separated on BN-PAGE
(Figure 3, left panel). As expected, the OXPHOS
complexes were found in the membrane fraction. In
the soluble fraction, two major protein complexes of
ca. 200 and 100 kDa were detected (Figure 3, left
panel). The soluble protein complexes, separated by
BN-PAGE, were resolved into their constitutive sub-
units on a 2D-SDS-PAGE (Figure 3, right panel).
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Figure 2. A. BN-PAGE analysis of mitochondria isolated from Polytomella sp. cells grown on ethanol at different pH. Protein complexes from
mitochondria (800 ng) isolated from cells grown on ethanol at pH 6.0 and pH 3.7 were separated on a 5-12% BN-PAGE and stained with
Coomassie blue R. B. Two-dimensional resolution of Polytomella sp. mitochondrial protein complexes. BN-PAGE lanes (A) were cut and
placed horizontally for subsequent resolution of the protein complexes into their respective subunits on Tricine-SDS-gel (15% acrylamide).
2D-SDS-PAGE were stained with Coomassie Brilliant blue R250. I, III, IV, V refer to the OXPHOS complexes. Oblique arrows point to the
85 kDa protein (ADHE) whose accumulation is pH-dependent.
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Figure 3. 2D-SDS-PAGE analysis of the soluble mitochondrial protein complexes of Polytomella sp. Left panel, mitochondria from cells grown
on ethanol at pH 6.0 were fractionated into their soluble and membrane-bound components and all the fractions were analyzed on BN-PAGE.
M, mitochondria (800 1g); Mb, membrane-bound proteins (800 1g); Sol, soluble proteins (700 wg). The position of the protein complexes as
identified in Figure 1 is indicated. @ indicates the position of the 200 kDa complex. Right panel, BN-PAGE lane of the soluble fraction was
transferred horizontally on a SDS-gel (12% acrylamide). The protein spots subjected to Edman degradation are pointed with an arrow. The
determined N-terminal sequences are reported in Table 1.
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Figure 4. Multiple sequence alignment of Polyfomella sp. ADHE with homologues from various sources. Sequences are from Polytomella
sp. (Ps ADHE) (this work), Chlamydomonas reinhardtii (Cr ADHE) (this work), Escherichia coli (Ec ADHE) (P17547); Entamoeba histo-
Iytica (Eh ADH2) (Q24803); Clostridium acetobutylicum (Ca ADHE) (P33744) and Thermosynechococcus elongatus strain BP-1 (Te ADHE)
(BACO07780). The cleavable mitochondrial targeting sequence in Polytomella ADHE is indicated in green. Amino acid sequences of Polytomella
sp. ADHE determined by Edman degradation are indicated in blue. Conserved patterns in the CoA-dependent ALDH domain and in the Fe-ADH
domain are indicated in red. ¢, Cys nucleophile in the catalytic center that is invariant in all CoA-dependent and CoA-independent ALDH.
The position of iron-containing ADH signature 1 (PS00913; ADH IRON 1) and signature 2 (PS00060; ADH IRON 2) are indicated. Note the
absence in Polytomella sp. ADHE sequence of the His residues in the sequence corresponding to Fe-ADH signature 2 (ADH IRON 2). NBS,
potential nucleotide binding site.

Corresponding to the 200 kDa range several proteins
were resolved, with a major protein of 85 kDa (spot
1) and two additional proteins of 60 kDa (spot 2) and
35 kDa (spot 3). The N-terminal sequence of the pro-
tein in spot 1 was identical to the N-terminal sequence
of the 85 kDa protein (Table 1) indicating that this gave two amino acids for several cycles (Table 1).
protein is soluble. The N-terminal sequence of two
tryptic fragments obtained from the 85 kDa protein

(IS1, IS2; see Table 1) did not produce significant
hits in database searches. Protein spots 2 and 3 were
also subjected to Edman degradation. No N-terminal
sequence could be obtained for spot 2, likely because
of a blocked N-terminus. Edman degradation of spot 3

Database searching identified several protein spots
on 2D gels as typical mitochondrial proteins (Table 1).
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Figure 4. (Continued.)

Spot 4 (60 kDa) and spot 5 (70 kDa) were identi-
fied as the mitochondrial heat-shock proteins HSP 60
and HSP 70. Spot 6 (45 kDa) and spot 7 (35 kDa)
were identified as malate dehydrogenase and citrate
synthase (Table 1) of the tricarboxylic acid cycle.

Identification of a Polytomella sp. cDNA encoding
mitochondrial ADHE

By means of primers designed from the peptides ob-
tained from spot 1, its corresponding cDNA was isol-
ated through PCR amplification, cDNA library screen-
ing and RLM-RACE. Database searching with the
cDNA sequence revealed that spot 1 corresponds to a
bifunctional aldehyde/alcohol dehydrogenase, ADHE.
Polytomella ADHE cDNA encodes a 885 amino acid
protein encompassing the N-terminal sequence de-
termined from the mature mitochondrial protein, thus
revealing the cleavage site of the 27 amino acid
N-terminal mitochondrial targeting sequence (MTS)
(Figure 4). The MTS lacks acidic residues, has a high
content of basic and hydroxylated residues and, con-
forms well to MTS prediction programs, including
MITOPROT 1I (Claros and Vincens, 1996), PRE-
DOTAR (version 0.5, www.inra.fr/predotar/) and Tar-
getP V1 (Emanuelsson et al., 2000). The molecular
mass of the mature ADHE was calculated to be 88
547 Da and its pl 6.98. Southern hybridization against

total Polytomella DNA (data not shown) indicates that
ADHE is encoded by a single-copy gene.

Database searching identified the two distinct en-
zymatic domains typical of ADHE in the Polytomella
protein: the N-terminal region (residues Lys-20 to
Pro-465) is homologous to the acetylating aldehyde
dehydrogenase (ALDH) family, a member of the
ALDH superfamily (aldehyde:NAD™ oxidoreductase,
EC 1.2.1.10), whereas the C-terminal region (Lys-485
to Ala-854) is homologous to the iron-containing alco-
hol dehydrogenase family (Fe-ADH; alcohol:NAD™
oxidoreductase, EC 1.1.1.1). Polytomella ADHE ex-
hibits high similarity (52-69%) to ADHE from cy-
anobacteria, clostridia and enterobacteria; the algal
protein also shows similarity (47-64%) to ADHE from
lactobacilli, bacilli and from the amitochondriate euk-
aryotes Giardia intestinalis, Spironucleus barkhanus,
Mastigamoeba balmuthii, and Entamoeba histolytica
(Yang et al., 1994; Rosenthal et al., 1997). Poly-
tomella ADHE exhibits several features characteristic
of ADHE: the conserved sequences found in CoA-
acetylating ALDH, PxG(x¢)P(x3)P (residues 113—-126
of the mature protein) (Goodlove et al., 1989; Fon-
taine et al., 2002) and G(x¢)D(x7)A(x7)K(x4)G(x2)C
(residues 224-255) (Fontaine et al., 2002); the ALDH
catalytic center DNGXICASEQ (residues 250-259)
(Rosenthal et al., 1997); two nucleotide-binding
sites GxGxG (residues 220-224) and GCG(x3)GG
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Table 1. N-terminal sequences of Polytomella sp. soluble mitochondrial proteins.

Spot MassP
number®  (kDa)

N-terminal sequence

Assignment®

1 65 AAPAAEQKSKSDEEGLSSLKSTLNKAVAAS  ADHE
IS1: TCGLIAHDPISGYSK
152: DLSREALTQIFDALPSADAEK
2 60 blocked -
3 37 Agx(N,T)(Q,V)AI(G,L)I(N,T)RF(A,G)RIS -
4 60 ATKEMRFGQD(A,V)RE(R,E)VLQ HSP60
5 70 ADEVIGIDLVTTNS HSP70
6 45 SSXTDLKKTVAELIPAEQDR citrate synthase
7 31 GSSSGEVGRKVTVLGAAGGIxQPL malate dehydrogenase

4Protein numbers as indicated in Figure 3.

bMolecular masses, estimated from SDS-PAGE in Figure 3.

¢ Assignment made on the basis of sequence similarity with known proteins, except for ADHE which
was identified from its corresponding cDNA sequence (see text). x indicates amino acids that were not
identified. Residues in parenthesis indicate simultaneous detection. IS/ and IS2, two internal tryptic

fragments of ADHE.

(residues 428-434) that may be involved in NADH
binding (Fontaine et al., 2002), and a third nucle-
otide binding site GxG(x2)V(x3)S in the ADH do-
main (residues 601-610) implicated in NAD(P)H
binding (Nair et al., 1994; Fontaine et al., 2002)
(Figure 4). The C-terminal ADH domain of ADHE
shows high similarity with Fe-ADH homologues that
use iron to polarize the carbonyl group of acetalde-
hyde during catalysis. Polytomella sp. ADHE also
exhibits the two iron-binding motifs conserved in Fe-
ADH: signature 1 (ADH IRON1; AIVDPSLIAAL-
PKAAVAAGAFEAISHAVE; residues 633-661) is
highly conserved, while signature 2 (ADH IRON2;
GVTQSLANKVAVACDIPVGVAAA; residues 711-
732) lacks three histidine residues conserved in
most ADHE homologues (Figure 4). The sequence
between the two ADH-IRON signatures is shorter
in Polytomella sp. than in other ADHE sequences
as confirmed by the amino acid sequencing of the
tryptic fragment IS2 (Asp-674 to Lys-694). Poly-
tomella ADHE also contains the conserved patterns
for ADH type III enzymes GGG(x3)D(x2)K (residues
545-554) and A(x2)DQC(x2)ANPRxP (residues 829—
842) (Fontaine et al., 2002). Finally, unlike bac-
teria and amitochondriate protists, the linker sequence
(Rosenthal er al., 1997) that connects the ALDH do-
main with the ADH domain in Polytomella ADHE
(residues Ala-466 to Gly-484) is unique in that it lacks
charged residues and contains several hydroxylated
residues.

Searching of C. reinhardtii expressed sequence
tag (EST) data revealed the presence of an ADHE
homologue in the photosynthetic alga. Overlapping

EST clones (AV397610, AV639995, AV644998;
BQS808648, BI873972, AV624287, BG855351,
BQ810550, BI873402 and BG855598), contigs
(20021010.5320.2, 20021010.2041.2) and genomic
sequence (scaffold 592) allowed assembly of the C.
reinhardtii ADHE cDNA sequence. C. reinhardtii
ADHE is encoded as a 951 amino acids that exhibits
an N-terminal extension of ca. 60 residues compared
to ADHE in amitochondriate eukaryotes (Figure 4).
A mitochondrial localization for C. reinhardtii ADHE
is predicted with the programs PREDOTAR (version
0.5, www.inra.fr/predotar/) and MITOPROT II (Claros
and Vincens, 1996). C. reinhardtii and Polytomella
sp. ADHE sequences are highly similar (56% iden-
tity); nevertheless, differences between the sequences
of the putative ADH-IRON 2 signature and between
the linker sequences were observed (Figure 4). The
complete genomic sequence encoding C. reinhardtii
ADHE spans 6358 bp and contains 15 introns.

Expression of Polytomella sp. ADHE

Northern hybridization was performed with RNA isol-
ated from cells grown on ethanol at pH 6.0 or 3.7, and
on acetate at pH 6.0. RNA blots were probed with the
pAdhE PCR product and the TubB1 probe as an in-
ternal control for loading equivalent amounts of RNA.
A single AdhE transcript of 3.5 kb was detected in all
three conditions (Figure 5). While strong hybridiza-
tion signals were observed with RNA from cells grown
at pH 6.0 on acetate or on ethanol, the signal obtained
with RNA from cells grown on ethanol at pH 3.7
was significantly weaker, indicating that Polytomella
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Figure 5. RNA analysis of ADHE levels in Polytomella sp. Total
RNA was isolated from Polytomella sp. cells grown on acetate,
pH 6.0 (1), ethanol, pH 6.0 (2) and ethanol, pH 3.7 (3). Equivalent
amounts of RNA in each lane (15 ng) were hybridized with PCR
amplification product (pAdhE) and Polytomella agilis S-tubulin 1
gene (Tub BI).

ADHE expression is strongly influenced by the pH of
the culture medium.

Phylogenetic analyses of ADHE

Phylogenetic analysis was carried out with ADHE
sequences available in databases: four from amito-
chondriate protists and the remainder from eubacteria.
No archaebacterial homologues were detected in data-
base searches. As shown in Figure 6a, Polytomella
sp. and C. reinhardtii ADHE cluster closely but in a
position distinct from Entamoeba histolytica ADHE
in the bifurcating NJ tree. The ADHE from E. his-
tolytica shares higher amino acid sequence identity
with homologues from Pasteurella multocida (63%)
or Streptococcus pneumoniae (62%) whereas ADHE
from Polytomella sp. and C. reinhardtii are more
similar to the homologue from the thermophilic cy-
anobacterium Thermosynechococcus elongatus (52%
and 66% identity, respectively). Notably, the predicted
C. reinhardtii ADHE shows fewer positional identities
to Polytomella sp. ADHE (57%) than to ADHE in the
cyanobacterium 7. elongatus (66%), an affinity that is
represented as a shared component of similarity by the
NeighborNet planar network in Figure 6b.
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Discussion

ADHE in Polytomella sp. mitochondria

ADHE catalyzes the fermentative production of eth-
anol by two sequential NADH-dependent reduc-
tions of acetyl-CoA, releasing ethanol and CoA-SH
(Goodlove et al., 1989; Bruchhaus and Tannich,
1994; Sanchez, 1998). It is believed that ADHE
arose through an ancient gene fusion of an acetyl-
CoA-dependent aldehyde dehydrogenase and an iron-
dependent alcohol dehydrogenase, probably within
the same eubacterial operon (Rosenthal et al., 1997;
Séanchez, 1998). In the Salmonella typhimurium eut
operon, the EutE gene encoding an acetyl-CoA ALDH
is proximal to the EutG gene that encodes a Fe-ADH;
the EutE and EutG protein sequences in tandem align-
ment with ADHE (Stojiljkovic et al., 1995). The
ADHE gene occurs in a skewed distribution among
phylogenetically disparate lineages. The majority of
the prokaryotes do not have the gene and among euka-
ryotes it has only been found in a few amitochondriate
protists.

The presence of ADHE in Polytomella sp. was
shown by amino acid sequencing of the protein identi-
fied in isolated mitochondria. The protein is soluble
and appears to be mainly present as a homodimer,
in contrast to Escherichia coli and E. histolytica,
where ADHE exists as multimers of 20 to 60 pro-
tomers (Bruchhaus and Tannich, 1994; Kessler et al.,
1991). Comparison of the N-terminus of mitochon-
drial ADHE from Polytomella to the cDNA sequence
reveals that ADHE is encoded as a precursor protein
with a typical MTS that is cleaved upon import into
the organelle. Based upon sequence similarity and
the presence of conserved cofactor-binding signatures,
Polytomella sp. ADHE is likely to perform the same
enzymatic reactions catalyzed by eubacterial ADHE.

Expression of E. coli ADHE is anaerobically reg-
ulated at both the transcriptional and translation levels
(Clark and Cronan, 1980; Leonardo et al., 1996). Dur-
ing aerobic metabolism, ADHE is highly susceptible
to metal-catalyzed oxidation. The amino acid chains
in ADHE and, in particular the histidine residues in
the ADH IRON 2 signature, are thought to be at-
tacked by highly reactive hydroxyl radicals locally
generated by the active site Fe’* of the ADH do-
main (Cabiscol et al., 1994; Tamarit et al., 1998). In
contrast to Chlamydomonas, Polytomella ADHE lacks
the conserved histidine residues in the ADH-IRON
2 signature, suggesting that the protein has lost its
iron-binding capacity or that iron chelation involves
more distant residues, and also suggesting a lower
sensitivity to oxygen.
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Figure 6. Sequence similarity among ADHE proteins. Open circles indicate branches (or splits) found in >95/100 bootstrap replications.
Eubacterial classifications recognized at http://www.ncbi.nlm.nih.gov/Taxonomy/ are indicated. Eukaryotic sequences are indicated in boldface
type. Underlined species names indicate that the genome sequence is available at http://www.tigr.org/. Scalebars indicate 0.1 substitution per
site. a. Neighbor-joining tree of protein logdet distances. b. NeighborNet graph of protein logdet distances showing multiple conflicting signals.
Splits are represented as parallel lines.



Site-directed mutagenesis of E. coli ADHE showed
that the conversion of Glu-568 in the ADH domain
into virtually any non-acidic residue resulted in an
enzyme active under both aerobic and anaerobic con-
ditions; the mutated ADHE allowed E. coli to grow
aerobically on ethanol (Holland-Staley et al., 2000).
The presence of a glycine residue in the algal se-
quences (Gly-569 in Polytomella sp. and Gly-641 in
C. reinhardtii) at the equivalent position of the Glu-
568 in the E. coli sequence or of the Ala-138 in S.
typhimurium EutG protein (Kofoid et al., 1999) sug-
gests that the algal protein may be able to function as
an ethanol dehydrogenase. However, Glu-568 in the
ADH domain is not an invariable amino acid, for ex-
ample it is replaced by Ala-578 in the anaerobic protist
E. histolytica.

External pH and the role of ADHE in Polytomella sp.
mitochondrial metabolism

External pH influences the levels of OXPHOS com-
plexes in Polytomella cells grown on ethanol at acidic
pH. The levels of respiratory complexes I, III and IV
were shown to be noticeably up-regulated at pH 3.7.
At pH 3.7, the respiratory rates are higher than at
pH 6.0, which is likely the consequence of a higher
content in respiratory complexes and also in cyto-
chrome ¢ (Atteia et al., 2000). The ratio between the
respiratory complexes and the FoF;-ATPase is clearly
affected by external pH, indicating an influence of
pH on core energy metabolism in the colorless alga
Polytomella.

In amitochondriate protists, ADHE is a cytosolic
enzyme that is integral to maintaining redox bal-
ance via the NAD(P)H-dependent reduction of acetyl-
CoA to ethanol, which is excreted as an end-product
(Reeves, 1984; Nair et al., 1994; Bruchhaus and Tan-
nich, 1994; Sanchez, 1998). In E. coli, the adhE
promoter is regulated in response to the cytosolic
NADH/NADT ratio (Leonardo et al., 1996), also sug-
gesting a role in redox balance in that organism. Both
OXPHOS complexes and ADHE in Polytomella sp.
cells grown on ethanol show a pH-dependent expres-
sion and accumulation. The expression of ADHE is
higher at moderately acidic pH, with either acetate or
ethanol as a carbon source (Figure 6). The current
data are compatible with the view that Polytomella
mitochondrial ADHE could be involved either in the
maintenance of redox balance (ethanol production)
or in ethanol assimilation (producing acetyl-CoA and
NADH for respiration), or both, depending upon en-
vironmental conditions. Experiments are currently be-
ing done to determine the function and specific activity
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of Polytomella ADHE isolated from cells grown at
different pH values.

Evolutionary considerations

ADHE genes were found in the genomes of several
Gram-positive bacteria belonging to the categories ba-
cilli and clostridia among the Firmicutes, in several
y -proteobacteria (particularly enterics), in one actin-
obacterium and one cyanobacterium, in addition to
the previously characterized sequences from several
amitochondriate protists (Yang et al., 1994; Rosenthal
et al., 1997; Andersson et al., 2003) (Figure 6).
Previous phylogenetic analyses have suggested that
the anaerobic eukaryotes E. histolytica and G. in-
testinalis acquired the gene for their ADHE enzyme
through independent lateral gene transfers, possibly
from Gram-positive donors (Rosenthal er al., 1997;
Field et al., 2000; Andersson et al., 2003). The
similarity of ADHE sequences from the diplomonads
G. intestinalis and S. barkhanus suggests the pres-
ence of the ADHE gene in their common ancestor
(Andersson et al., 2003), but an independent lateral
acquisition of E. histolytica ADHE seems to be the
easiest explanation (Field et al., 2000; Fontaine et al.,
2002; Andersson et al., 2003) (see also Figure 6a).
The sequences from Polytomella sp. mitochondria
and C. reinhardtii make the picture somewhat more
complicated because they cluster close to, but not
with the sequences from Giardia, Spironucleus, and
Mastigamoeba.

Notably, the clostridial (low-GC Gram positives)
sequences cluster much more closely to the homo-
logues from enterics than they do to the homologues
from bacilli (low-GC Gram-positives) (Figure 6). The
central branch or split (marked by an asterisk in Fig-
ure 6) separates available ADHE sequences into two
larger groups. The overall picture of ADHE sequence
similarity is highly reminiscent of that found for pyr-
uvate kinase (PK), where two clusters (I and II) and a
skewed distribution paralleling that found for ADHE
were also observed (Schramm et al.,. 2000). Schramm
et al. (2000) noted that the PK dichotomy correlated
with allosteric properties of the enzymes, not with
phylogeny. Although we were unable to identify in the
alignment specific motifs or in the literature regulatory
properties of ADHE that might distinguish sequences
above and below the asterisk in Figure 6, a pattern of
sequence similarity that is largely driven by functional
aspects rather than by neutral evolution cannot be ex-
cluded a priori for this sequence sample. Even if we
accept lateral gene transfer from Gram positive donors
for the origin of the Bifidobacterium, Pasteurella, and
Thermosynechococcus genes, it is difficult to evoke
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either lateral gene transfer (from what donor?) or an-
cient duplication and differential losses (too many) to
account for the differentness of ADHE from clostridia
and bacilli.

Perhaps more caution is warranted when it comes
to evidence for horizontal gene transfer on the basis
of an unusual phylogeny of an ancient enzyme, as is
the case for ADHE. Methods of phylogenetic recon-
struction used in this and prior studies to construct
the phylogenies from which horizontal gene transfers
for ADHE can be inferred are based upon the rates
across sites (RAS) models of protein evolution. But
we know of no evidence to indicate that proteins in
general or ADHE in particular actually evolve accord-
ing to a RAS model. From the standpoint of molecular
evolutionary theory, RAS models have been argued
to be less realistic than covarion models (Lockhart
et al., 2000; Penny et al. 2001) and protein evolution
simulations taking into account protein folding pro-
duced results highly compatible with a covarion model
(Bastolla et al., 2002; Bastolla er al., 2003). If the
model under which a phylogeny is reconstructed de-
viates strongly from the process by which the protein
evolved, the phylogeny can be severely in error (Penny
etal., 2001).

The neighbornet graph of the ADHE protein se-
quence similarity shown in Figure 6b indicates that
the ADHE data are non-tree-like in many respects.
This could be due to convergence, noise, or other
conflicting signal (Bryant and Moulton, 2002). In
a neighbornet graph such conflicting signals in the
data become visible that are not represented in purely
bifurcating trees. Notwithstanding very complicated
patterns of sequence similarity, eukaryotic ADHE,
like most enzymes of eukaryotic core energy meta-
bolism studied to date lacks obvious archaebacterial
homologues and thus appears to be of eubacterial
origin.

Functional considerations

Earlier biochemical studies of Chlamydomonas and
related green algae had provided evidence for ADHE
activity in the mitochondria of these algae (Kreuzberg,
1984; 1985; Kreuzberg et al., 1987), but until
now ADHE sequences were only available for the
enzyme from the cytosol of anaerobic eukaryotes
with an energy metabolic pattern designated as Type
I (Miiller, 1998). The expression of Polytomella
ADHE under aerobic conditions (Figure 5) extends
the occurrence and expression of this enzyme to aer-
obic eukaryotes growing under aerobic conditions.
In Polytomella ADHE is clearly localized to mito-
chondria, extending the occurrence of the enzyme

to oxygen-respiring mitochondria as well. The pres-
ence of a seemingly anaerobic-specific enzyme in an
oxygen-respiring mitochondrion is not without pre-
cedent, because Euglena mitochondria contain pyr-
uvate:ferredoxin oxidoreductase, an oxygen-sensitive
enzyme otherwise typical of hydrogenosomes (Rotte
et al., 2001). Furthermore, the oxygen-sensitive as-
sembly of Fe-S clusters occurs in the mitochondrial
matrix (Tachezy et al., 2001), perhaps because it is
the most oxygen-poor compartment in aerotolerant
eukaryotes.

In E. coli, ADHE harbors an additional enzymatic
activity, that of a pyruvate formate-lyase (PFL) de-
activase (Kessler et al., 1991). This is noteworthy
because PFL activity has been measured both in mito-
chondria of Chlamydomonas (Kreuzberg et al., 1987)
and in whole cells of the green alga Chlorogonium
(Kreuzberg, 1985). PFL also occurs in chytridomy-
cete fungi, where it is localized to hydrogenosomes
(Akhmanova et al., 1999) and evidence for the pres-
ence of ADHE in PFL-possessing chytrids has been
noted (Hackstein et al., 1999). PFL also requires an
activating enzyme in E. coli (Wong et al., 1993), and
all sequenced prokaryotic genomes surveyed here (un-
derlined in Figure 6b) that possess ADHE also possess
both PFL and PFL activase. Database searching indic-
ated the presence of a gene encoding a PFL-activase in
the green alga C. reinhardtii (W. Martin and A. Atteia,
unpublished results).

The presence and expression of ADHE in euka-
ryotes that can live under fully aerobic conditions and
that possess fully developed mitochondria is distinctly
at odds with the view that eukaryotes acquired ADHE
genes specifically as adaptations to an anaerobic life-
style (Andersson et al., 2003), because Polytomella
ADHE is expressed under ambient oxygen levels
in an oxygen-respiring organelle. Chlorophycean al-
gae are widely distributed in nature and undergo
intimate interactions with other organisms. For ex-
ample, Chlamydomonas sp. cells can be parasitized by
chytrid fungi (Shin et al., 2001), and some species of
Chlamydomonas are endosymbionts of large miliolid
foraminifera (Pawlowski et al., 2001). Thus, there
has been ample opportunity during evolution for these
oxygen respiring algae to have acquired their genes for
ADHE via horizontal transfer from yet unidentifiable
donors, but the present data are incompatible with the
view that if such acquisitions occurred, they did so as
an adaptation to an anaerobic lifestyle.
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