Molecular phylogeny of the atpB and atpE genes of the brown alga Pylaiella littoralis

WILLIAM F. MARTIN¹, STEFAN JOUANNIC² AND SUSAN LOISEAUX-DE GOĒR³*

¹Institut für Genetik, Biozentrum, Technische Universität Braunschweig, Postfach 3329, W-3300 Braunschweig, Germany
²Centre d’Études Océanologiques et de Biologie Marine, CNRS-UPR 4601, BP 74, F 29682 Roscoff Cedex, France

Recent phylogenetic studies suggest that plastid ribosomal RNA genes from Pylaiella littoralis have a cyanobacterial origin, whereas their Rubisco genes are related to the homologous α- and β-purple eubacterial genes. We have constructed a phylogenetic tree based upon the atpB and atpE sequences, including the same range of taxa (chlorophytes, chromophytes, cyanobacteria, α- and β-purple eubacteria) and using the same methods as previously described for rbcL genes. This phylogenetic tree clearly shows that the atpB and atpE genes of this brown alga are more closely related to their cyanobacterial homologues than to those of α- or β-purple eubacteria. Different hypotheses that could explain the apparently composite origin of red-chromophyte plastomes are discussed.

Key words: Chromophyte algae, plastidial genome, phylogeny.

Introduction

The atpB and the atpE genes encode, respectively, for the β and ε subunits of the CF1/ATPase complex. In the plastid genome of the brown alga Pylaiella littoralis (L.) Kjellm., these two genes are organised in a cluster and separated by a 14-nucleotide spacer region (Jouannic et al., 1992).

Comparison of the atpB gene sequences in organisms from eubacteria to land plants shows that this gene is highly conserved. Given its presence in all organisms and its large size, we predicted that it could be a good model for phylogenetic studies. In trees inferred from ribosomal RNA gene sequences all plastid lineages appear as descendants of the cyanobacterial lineage (Markowicz & Loiseaux-de Goër, 1991; Douglas & Turner, 1991; Somerville et al., 1993). However, in trees inferred from Rubisco gene sequences the red-chromophyte plastid lineage emerges from the cyanobacterial lineage (Assali et al., 1990, 1991; Martin et al., 1992). Thus, we constructed a phylogenetic tree based upon the atpB/E sequences to determine whether these protein-coding genes in red-chromophyte plastids have a different origin from that of ribosomal RNA genes.

Materials and methods

Aligned amino acid sequences for the atpB and atpE genes were taken from Jouannic et al. (1992). Corresponding codon insertions were introduced into the nucleotide sequences. Amino- and carboxyterminal regions of length heterogeneity were deleted from the alignment, yielding for comparison 1914 nucleotide positions in each set of sequences (atpB+atpE). Divergence at non-synonymous sites between aligned nucleotide sequences (alignment available upon request from the authors) was measured as Ks with the weighted pathway method (Li et al., 1985). The matrix of distance values was analysed with the neighbour-joining method (Saitou & Nei, 1987). Parsimony bootstrap analysis (Felsenstein, 1985) was performed for first and second codon positions (100 replicates); this

![Fig. 1. Neighbour-joining tree (Saitou & Nei, 1987) for values of divergence at non-synonymous sites between concatenated atpB and atpE coding regions as measured with the weighted pathway method (Li et al., 1985), showing bootstrap confidence intervals at nodes. The scale bar indicates a length of Ks=0.1; branch lengths (horizontal) are drawn to scale. The leftmost branch of the tree was arbitrarily 'bent' to permit display of species names in a convenient manner. Species are: Escherichia coli, a γ-purple eubacterium (Kanazawa et al., 1985); Rhodospirillum rubrum, an α-purple eubacterium (Falk et al., 1985); Synechococcus 6301 and Anabamia PCC 7120, cyanobacteria (Curtis, 1988); Pylaiella littoralis, a chromophyte (Jouannic et al., 1992); and the chlorophytes Chlamydomonas reinhardtii (Woessner et al., 1986, 1987), Marchantia polymorpha (Umeo et al., 1986), Nicotiana tabacum (Kazuo et al., 1983) and Spinacia oleracea (Zurawski et al., 1982).]
Results and Discussion

The phylogenetic tree based on the atpB and atpE genes is shown in Fig. 1. The topologies of trees based upon either gene alone are similar to that of atpB and atpE taken together (not shown). As in trees based upon ribosomal RNA sequences, and in contrast to those based upon Rubisco genes, the α- and γ-purple eubacteria group together on a different lineage from that of cyanobacteria and all plastids. In the same way, two plastid lines emerge from the cyanobacterial lineage: the green plastid lineage comprising plastids of green plants and a green alga, and the chromophyte lineage. Unfortunately, no atpB/E sequences from rhodophyte plastids are available. Consequently, the atpB and atpE genes from P. littoralis appear to have a cyanobacterial origin, as do the 16S and 23S ribosomal RNA genes. However, the topology of the tree, as of those inferred from ribosomal RNA sequences, does not allow us to argue in favour of monophyleis or polyphyleis of plastomes in the absence of any information on the timing of endosymbiosis.

A similar result has recently been obtained by Leitsch & Kowalik (1992) for a phylogenetic tree based upon amino acid sequences of atpB from a different brown alga, Dictyota dichotoma. These authors obtained bootstrap confidence intervals with equivalent or slightly lower values than ours, perhaps because of the different methods used. The D. dichotoma sequences have not been added to our data, but would certainly group with those of P. littoralis given the high homology between amino acid sequences of the two atpB subunits (90.6%).

In contrast to the rRNA and atpB/E genes, the rbcL and rbcS genes of P. littoralis, other chromophytes and rhodophytes are clearly more closely related to α- and β-purple eubacterial homologues than to those of cyanobacteria and chlorophytes. In order to reconcile these data, one could postulate a chimaeric nature for rhodophyte and chromophyte plastomes. This composite plastidial origin could be the result of a mixture of entire genomes or could come from lateral transfers of genes. Different possibilities can be considered. The chimaeric nature could have existed before the endosymbiosis, resulting from exchanges between prokaryotes such as cyanobacteria and purple eubacteria. It could also have appeared in the host cell, after endosymbiosis, between different endosymbionts or between an endosymbiont and mitochondria which derived from α-purple eubacteria (Yang et al., 1985). In this latter case, however, one must explain the close relationship of the Rubisco genes of cyanobacteria and γ-purple eubacteria and of α- and β-purple eubacteria (Fig. 2C) in contrast to the close relationship between γ and β-purple eubacterial rRNA genes well separated from those of cyanobacteria (Fig. 2B). Unfortunately, no atpB/E sequences were available from β-purple eubacteria for inclusion in the present study, but the topology of the tree (Fig. 2A) clearly shows that γ-purple atpB genes are more closely related to the α-purple eubacterial than to the cyanobacterial homologues.

Alternatively, the progenitors of purple eubacteria and cyanobacteria may have possessed two or more rbcL genes, one of which was differentially lost several times along the lineages giving rise to rhodophyte plastids, chromophyte plastids and α- and β-purple eubacteria on one hand and to cyanobacteria, green plastids and γ-purple eubacteria on the other. The latter scenario cannot be excluded because extant purple and cyanobacteria often possess multiple copies of photosynthesis genes (Vrba & Curtiss, 1989; Gibson et al., 1991; Lill & Nelson, 1991; W. Martin unpublished data), and their antecedents might also have possessed these multiple genes.

Acknowledgements

We wish to thank the Gesellschaft für Biotechnologische Forschung, Braunschweig, Germany, for the use of their computer facilities.

References


Molecular phylogeny of a brown alga


(Received 13 November 1992; revised 27 January 1993; accepted 29 January 1993)